Prelim. vocabulary for 'Statistical methods of HEP analysis'

1 월 20 일 저녁 강의 'Statistical methods of HEP analysis'에 꼭 필요한 기초 내용입니다. 강의 전까지 숙지하고 오시 면 좋겠습니다. - 권영준

1 Random variables, PDF, CDF

- A random variable is a numerical characteristic assigned to an element of the sample space. It can be discrete or continuous.
- Suppose the probability $P(x \in[x, x+d x])$ of a random variable x to be found within the region $[x, x+d x]$ is $f(x) d x$. Then we call $f(x)$ the probability density function (PDF). The PDF must be properly normalized:

$$
\int_{-\infty}^{+\infty} f(x) d x=1
$$

(Q) How will it appear if x is a discrete random variable?

- The probability $F(x)$ to have an outcome less than or equal to x is called the cumulative distribution function (CDF).

$$
\int_{-\infty}^{x} f\left(x^{\prime}\right) d x^{\prime} \equiv F(x)
$$

2 Expectation value, mean, variance, covariance

- Expectation value of a function $g(x)$

$$
E[g] \equiv \int_{\Omega} d x f(x) g(x)
$$

where Ω is the random variable space and $x \in \Omega$.
For discrete random variable x,

$$
E[g] \equiv \sum_{\Omega} P(x) g(x)
$$

- Expectation value is a linear operation:

$$
E[\alpha g(x)+\beta h(x)]=\alpha E[g(x)]+\beta E[h(x)]
$$

- mean $=$ expectation value for the random variable x

$$
\mu=\bar{x}=\langle x\rangle=\int_{\Omega} d x f(x) x=E[x]
$$

- variance $V(x)=\sigma^{2}$

The square root of the variance is often called the standard deviation, σ.

$$
\begin{aligned}
V(x)=\sigma^{2} & =E\left[(x-\mu)^{2}\right] \\
& =E\left[x^{2}\right]-(E[x])^{2} \\
& =\int_{\Omega} d x f(x)(x-\mu)^{2}
\end{aligned}
$$

- sample mean \& sample variance

Since we don't a priori know the true mean and the true variance ${ }^{1}$, we often use the measured sample to estimate the mean and variance. Suppose we have n measurements $\left\{x_{i}\right\}$ where x_{i} follows $N(\mu, \sigma)$ which is a normal ("Gaussian") distribution with mean μ and variance σ^{2}.

- sample mean

$$
\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i} \sim N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)
$$

With more measurements, the estimation of the mean will become more accurate.

- sample variance

$$
V(x)=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}=\frac{n}{n-1}\left(\overline{x^{2}}-\bar{x}^{2}\right)
$$

Sample variance approaches σ^{2} for large n.
(Q) Why is the denominator $n-1$ rather than n ?

- For a multiple-dimensional random variable space,

$$
E[g(x, y)]=\iint_{\Omega} d x d y f(x, y) g(x, y)
$$

where $f(x, y)$ is the 2 -dimensional PDF.
We also have, for the mean and variance,

$$
\begin{aligned}
\mu_{x}=E[x] & =\iint_{\Omega} d x d y f(x, y) x \\
\sigma_{x}^{2}=E\left[\left(x-\mu_{x}\right)^{2}\right] & =\iint_{\Omega} d x d y f(x, y)\left(x-\mu_{x}\right)^{2}
\end{aligned}
$$

[^0]- covariance, $V_{x, y}$

$$
\begin{aligned}
V_{x, y} & \equiv E\left[\left(x-\mu_{x}\right)\left(y-\mu_{y}\right)\right] \\
& =E[x y]-E[x] E[y]
\end{aligned}
$$

Often, the correlation coeffiient is used to show the correlation between two random variables (here, x and y):

$$
\rho(x, y) \equiv \frac{V_{x, y}}{\sigma_{x} \sigma_{y}}
$$

(HW) Show the following:

* $-1 \leq \rho(x, y) \leq+1$
* For independent variables x and $y, \rho(x, y)=0$.
* But the reverse is not true.

For example, consider $y=x^{2}$ for $-1 \leq x \leq+1$.
Some examples of 2D correlated distributions:
$\rho=0.75$

$$
\rho=-0.75
$$

$$
\rho=0.95
$$

 $\rho=0.25$

3 Error propagation

Suppose we have a known function $f(x, y)$ having 2D random variables x and y as its arguments. Assume that we have the 2D covariance matrix for (x, y). Then the error (uncertainty) in $f(x, y)$ is obtained by:

$$
\sigma_{f}^{2}=\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)\left(\begin{array}{cc}
V_{x x} & V_{x y} \\
V_{y x} & V_{y y}
\end{array}\right)\binom{\partial f / \partial x}{\partial f / \partial y}
$$

(Q) What happens if x and y are independent?

4 Some common PDF's

Table 35.1. Some common probability density functions, with corresponding characteristic functions and means and variances. In the Table, $\Gamma(k)$ is the gamma function, equal to $(k-1)$! when k is an integer; ${ }_{1} F_{1}$ is the confluent hypergeometric function of the 1 st kind [11].

Distribution	Probability density function f (variable; parameters)	Characteristic function $\phi(u)$	Mean	Variance σ^{2}
Uniform	$f(x ; a, b)=\left\{\begin{array}{cl}1 /(b-a) & a \leq x \leq b \\ 0 & \text { otherwise }\end{array}\right.$	$\frac{e^{i b u}-e^{i a u}}{(b-a) i u}$	$\frac{a+b}{2}$	$\frac{(b-a)^{2}}{12}$
Binomial	$\begin{gathered} f(r ; N, p)=\frac{N!}{r!(N-r)!} p^{r} q^{N-r} \\ r=0,1,2, \ldots, N ; \quad 0 \leq p \leq 1 ; \quad q=1-p \end{gathered}$	$\left(q+p e^{i u}\right)^{N}$	$N p$	$N p q$
Poisson	$f(n ; \nu)=\frac{\nu^{n} e^{-\nu}}{n!} ; \quad n=0,1,2, \ldots ; \quad \nu>0$	$\exp \left[\nu\left(e^{i u}-1\right)\right]$	ν	ν
Normal (Gaussian)	$\begin{aligned} & f\left(x ; \mu, \sigma^{2}\right)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-(x-\mu)^{2} / 2 \sigma^{2}\right) \\ & -\infty<x<\infty ; \quad-\infty<\mu<\infty ; \quad \sigma>0 \end{aligned}$	$\exp \left(i \mu u-\frac{1}{2} \sigma^{2} u^{2}\right)$	μ	σ^{2}

Multivariate
Gaussian
$\exp \left[i \boldsymbol{\mu} \cdot \boldsymbol{u}-\frac{1}{2} \boldsymbol{u}^{T} V \boldsymbol{u}\right] \quad \boldsymbol{\mu} \quad V_{j k}$

$$
f(\boldsymbol{x} ; \boldsymbol{\mu}, V)=\frac{1}{(2 \pi)^{n / 2} \sqrt{|V|}}
$$

$$
\begin{gathered}
\times \exp \left[-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^{T} V^{-1}(\boldsymbol{x}-\boldsymbol{\mu})\right] \\
-\infty<x_{j}<\infty ; \quad-\infty<\mu_{j}<\infty ; \quad|V|>0
\end{gathered}
$$

$$
\chi^{2} \quad f(z ; n)=\frac{z^{n / 2-1} e^{-z / 2}}{2^{n / 2} \Gamma(n / 2)} ; \quad z \geq 0 \quad(1-2 i u)^{-n / 2} \quad n \quad 2 n
$$

Student's $t \quad f(t ; n)=\frac{1}{\sqrt{n \pi}} \frac{\Gamma[(n+1) / 2]}{\Gamma(n / 2)}\left(1+\frac{t^{2}}{n}\right)^{-(n+1) / 2} \quad-\quad \begin{array}{cc}0 & n /(n-2) \\ \text { for } n>1 & \text { for } n>2\end{array}$
$-\infty<t<\infty ; \quad n$ not required to be integer
Gamma $\quad f(x ; \lambda, k)=\frac{x^{k-1} \lambda^{k} e^{-\lambda x}}{\Gamma(k)} ; \quad 0 \leq x<\infty ; \quad(1-i u / \lambda)^{-k} \quad k / \lambda \quad k / \lambda^{2}$
k not required to be integer

Beta | | $f(x ; \alpha, \beta)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} x^{\alpha-1}(1-x)^{\beta-1}$ | ${ }_{1} F_{1}(\alpha ; \alpha+\beta ; i u)$ | $\frac{\alpha}{\alpha+\beta}$ | $\frac{\alpha \beta}{(\alpha+\beta)^{2}(\alpha+\beta+1)}$ |
| :--- | :--- | :--- | :--- | :--- |
| | $0 \leq x \leq 1$ | | | |

[^0]: ${ }^{1}$ In most problem, these are the variables we want to find out.

