
Prelim. vocabulary for ‘Statistical methods of HEP analysis’
1월 20일 저녁 강의 ‘Statistical methods of HEP analysis’에 꼭 필요한 기초 내용입니다. 강의 전까지 숙지하고 오시
면좋겠습니다. –권영준

1 Random variables, PDF, CDF

• A random variable is a numerical characteristic assigned to an element of the sample space. It can
be discrete or continuous.

• Suppose the probability P (x ∈ [x, x + dx]) of a random variable x to be found within the region
[x, x + dx] is f(x)dx. Then we call f(x) the probability density function (PDF). The PDF must be
properly normalized: ∫ +∞

−∞
f(x)dx = 1 .

(Q) How will it appear if x is a discrete random variable?

• The probability F (x) to have an outcome less than or equal to x is called the cumulative distribution
function (CDF).

∫ x

−∞
f(x′)dx′ ≡ F (x) .
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Cumulative distribution function
Probability to have outcome less than or equal to x is

cumulative distribution function

Alternatively define pdf with
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PDF CDF

CDF
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2 Expectation value, mean, variance, covariance

• Expectation value of a function g(x)

E[g] ≡
∫

Ω
dxf(x)g(x) ,

where Ω is the random variable space and x ∈ Ω.

For discrete random variable x,

E[g] ≡
∑

Ω

P (x)g(x) .
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• Expectation value is a linear operation:

E[αg(x) + βh(x)] = αE[g(x)] + βE[h(x)]

• mean = expectation value for the random variable x

µ = x = 〈x〉 =

∫

Ω
dx f(x)x = E[x]

• variance V (x) = σ2

The square root of the variance is often called the standard deviation, σ.

V (x) = σ2 = E[(x− µ)2]

= E[x2]− (E[x])2

=

∫

Ω
dxf(x) (x− µ)2

• sample mean & sample variance

Since we don’t a priori know the true mean and the true variance1, we often use the measured sample
to estimate the mean and variance. Suppose we have n measurements {xi} where xi follows N(µ, σ)

which is a normal (“Gaussian”) distribution with mean µ and variance σ2.

– sample mean

x =
1

n

n∑

i=1

xi ∼ N
(
µ,

σ√
n

)

With more measurements, the estimation of the mean will become more accurate.

– sample variance

V (x) =
1

n− 1

n∑

i=1

(xi − x)2 =
n

n− 1

(
x2 − x2

)

Sample variance approaches σ2 for large n.

(Q) Why is the denominator n− 1 rather than n?

• For a multiple-dimensional random variable space,

E[g(x, y)] =

∫ ∫

Ω
dx dyf(x, y)g(x, y) ,

where f(x, y) is the 2-dimensional PDF.

We also have, for the mean and variance,

µx = E[x] =

∫ ∫

Ω
dx dyf(x, y)x

σ2
x = E[(x− µx)2] =

∫ ∫

Ω
dx dyf(x, y) (x− µx)2

1In most problem, these are the variables we want to find out.
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• covariance, Vx,y

Vx,y ≡ E[(x− µx)(y − µy)]

= E[xy]− E[x] E[y]

Often, the correlation coeffiient is used to show the correlation between two random variables
(here, x and y):

ρ(x, y) ≡ Vx,y
σx σy

(HW) Show the following:

* −1 ≤ ρ(x, y) ≤ +1

* For independent variables x and y, ρ(x, y) = 0.

* But the reverse is not true.

For example, consider y = x2 for −1 ≤ x ≤ +1.

Some examples of 2D correlated distributions:
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Correlation (cont.) 
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3 Error propagation

Suppose we have a known function f(x, y) having 2D random variables x and y as its arguments. Assume
that we have the 2D covariance matrix for (x, y). Then the error (uncertainty) in f(x, y) is obtained by:

σ2
f =

(
∂f

∂x
,
∂f

∂y

)(
Vxx Vxy
Vyx Vyy

)(
∂f/∂x

∂f/∂y

)

(Q) What happens if x and y are independent?
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4 Some common PDF’s 35. Probability 9

Table 35.1. Some common probability density functions, with corresponding characteristic functions and

means and variances. In the Table, Γ(k) is the gamma function, equal to (k − 1)! when k is an integer;

1F1 is the confluent hypergeometric function of the 1st kind [11].

Probability density function Characteristic

Distribution f (variable; parameters) function φ(u) Mean Variance σ2

Uniform f(x;a, b) =

{
1/(b − a) a ≤ x ≤ b

0 otherwise

eibu − eiau

(b − a)iu

a + b

2

(b − a)2

12

Binomial f(r;N, p) =
N !

r!(N − r)!
prqN−r (q + peiu)N Np Npq

r = 0, 1, 2, . . . , N ; 0 ≤ p ≤ 1 ; q = 1 − p

Poisson f(n; ν) =
νne−ν

n!
; n = 0, 1, 2, . . . ; ν > 0 exp[ν(eiu − 1)] ν ν

Normal
(Gaussian)

f(x; µ, σ2) =
1

σ
√

2π
exp(−(x − µ)2/2σ2) exp(iµu − 1

2σ2u2) µ σ2

−∞ < x < ∞ ; −∞ < µ < ∞ ; σ > 0

Multivariate
Gaussian

f(x;µ, V ) =
1

(2π)n/2
√

|V |
exp

[
iµ · u − 1

2uT V u
]

µ Vjk

× exp
[
− 1

2 (x − µ)T V −1(x − µ)
]

−∞ < xj < ∞; − ∞ < µj < ∞; |V | > 0

χ2 f(z;n) =
zn/2−1e−z/2

2n/2Γ(n/2)
; z ≥ 0 (1 − 2iu)−n/2 n 2n

Student’s t f(t;n) =
1√
nπ

Γ[(n + 1)/2]

Γ(n/2)

(
1 +

t2

n

)−(n+1)/2

—
0

for n > 1

n/(n − 2)

for n > 2

−∞ < t < ∞ ; n not required to be integer

Gamma f(x; λ, k) =
xk−1λke−λx

Γ(k)
; 0 ≤ x < ∞ ; (1 − iu/λ)−k k/λ k/λ2

k not required to be integer

Beta f(x; α, β) =
Γ(α + β)

Γ(α)Γ(β)
xα−1(1 − x)β−1

1F1(α; α + β; iu)
α

α + β

αβ

(α + β)2(α + β + 1)
0 ≤ x ≤ 1
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