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1 Random variables, PDF, CDF

e A random variable is a numerical characteristic assigned to an element of the sample space. It can
be discrete or continuous.

e Suppose the probability P(z € [z,z + dx]) of a random variable = to be found within the region
[,z + dx] is f(z)dz. Then we call f(x) the probability density function (PDF). The PDF must be
properly normalized:
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(Q) How will it appear if = is a discrete random variable?

e The probability F'(z) to have an outcome less than or equal to x is called the cumulative distribution
function (CDF).
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2 Expectation value, mean, variance, covariance
e Expectation value of a function g(x)

Elg) = /Q dzf(2)g(z)

where () is the random variable space and x € Q).

For discrete random variable z,



e Expectation value is a linear operation:

Elag(z) + ph(z)] = aElg(x)] + SE[h(2)]

e mean = expectation value for the random variable x

p=7= ()= [ do fla)o = Bl

e variance V(z) = o2

The square root of the variance is often called the standard deviation, o.

V(z) = 0* = Bl(z — p)’]
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e sample mean & sample variance

Since we don’t a priori know the true mean and the true variance®, we often use the measured sample

to estimate the mean and variance. Suppose we have n measurements {z;} where z; follows N (u, o)

which is a normal (“Gaussian”) distribution with mean ;. and variance o2.
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With more measurements, the estimation of the mean will become more accurate.

— sample variance
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Sample variance approaches o2 for large n.
(Q) Why is the denominator n — 1 rather than n?

e For a multiple-dimensional random variable space,

Elg(z,y)] Z//Qdfc dyf(z,y)g(z,y),

where f(z,y) is the 2-dimensional PDF.

We also have, for the mean and variance,

pe = Blel = [ [ dodyp(e.na
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In most problem, these are the variables we want to find out.



e covariance, V, ,

Vay = El(x — pa)(y — py)]
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Often, the correlation coeffiient is used to show the correlation between two random variables
(here, z and y):
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(HW) Show the following:
-1 < p((l),y) < +1
* For independent variables x and y, p(z,y) = 0.
* But the reverse is not true.
For example, consider y = 22 for —1 < z < +1.
Some examples of 2D correlated distributions:
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3 Error propagation

Suppose we have a known function f(z,y) having 2D random variables x and y as its arguments. Assume
that we have the 2D covariance matrix for (z,y). Then the error (uncertainty) in f(x,y) is obtained by:
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(Q) What happens if = and y are independent?



4 Some common PDF’s

Table 35.1. Some common probability density functions, with corresponding characteristic functions and

means and variances. In the Table, I'(k) is the gamma function, equal to (k — 1)! when k is an integer;

1Fy is the confluent hypergeometric function of the 1st kind [11].

Probability density function Characteristic
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Poisson flnv) = — n=012..5; v>0 expv(e™ — 1)] v v
n!
1 .
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