Searching for composite quark partners at the LHC

Thomas Flacke

Korea Advanced Institute of Science and Technology

C. Delaunay, TF, J. Gonzales-Fraile	e, Seung Joon Lee,
G. Panico, G. Perez	[JHEP 02 (2014) 055]
ΓF, Jeong Han Kim, Seung Joon Lee, Sung Hak Lim	[arXiv:1312.5316]
FF, Sang Eun Han, Jeong Han Kim, Seung Joon Lee	in preparation

KIAS meeting, 2013/02/18

Composite Higgs model

- C Atlas and CMS found a Higgs-like resonance with a mass m_h ~ 126 GeV and couplings to γγ, WW, ZZ, bb, and ττ compatible with the standard model Higgs.
- 🙂 The standard model suffers from the hierarchy problem.

 \Rightarrow We need to search for an SM extension with a Higgs-like state which provides an explanation for why m_h , $v \ll M_{\rho l}$.

One possible solution: Composite Higgs Models (CHM)

- Consider a model which get strongly coupled at a scale $f \sim O(1 \text{ TeV})$. \rightarrow naturally obtain $f \ll M_{pl}$.
- Assume a global symmetry which is spont. broken by dim. transmutation.
 → strongly coupled resonances at *f* and Goldstone bosons (to be identified with the Higgs sector).
- Assume that the only source of explicit symmetry breaking arises from Yukawa-type interactions.
 - \rightarrow The Higgs-like particles become pseudo-Goldstone bosons
 - \Rightarrow Naturally generates a scale hierarchy $v \sim m_h \ll f \ll M_{pl}$.

Composite Higgs model: general setup

Simplest realization:

The minimal composite Higgs model (MCHM) Agashe, Contino, Pomarol [2004] Effective field theory based on $SO(5) \rightarrow SO(4)$ global symmetry breaking.

- The Goldstone bosons live in $SO(5)/SO(4) \rightarrow 4$ d.o.f.
- $SO(4) \simeq SU(2)_L \times SU(2)_R$

Gauging $SU(2)_L$ yields an $SU(2)_L$ Goldstone doublet. Gauging T_R^3 assigns hyper charge to it. Later: Include a global $U(1)_X$ and gauge $Y = T_R^3 + X$. \Rightarrow Correct quantum numbers for the Goldstone bosons to be identified as non-linear realizations of the Higgs doublet.

We use the CCWZ construction to construct the low-energy EFT. Coleman, Wess, Zumino [1969], Callan, Coleman [1969]

Central element: the Goldstone boson matrix

$$U(\Pi) = \exp\left(\frac{i}{f}\Pi_i T^i\right) = \begin{pmatrix} 1 & 0 & 0 & 0 & 0\\ 0 & 1 & 0 & 0 & 0\\ 0 & 0 & 1 & 0 & 0\\ 0 & 0 & 0 & \cos\overline{h}/f & \sin\overline{h}/f\\ 0 & 0 & 0 & -\sin\overline{h}/f & \cos\overline{h}/f \end{pmatrix},$$

where $\Pi = (0, 0, 0, \overline{h})$ with $\overline{h} = \langle h \rangle + h$ and T^{i} are the broken *SO*(5) generators.

From it, one can construct the CCWZ d^i_{μ} and e^a_{μ} symbols (roughly speaking: connections corresponding to broken / unbroken generators). *E. g.* kinetic term for the "Higgs":

$$\mathcal{L}_{\Pi} = \frac{f^2}{4} d^{i}_{\mu} d^{i\mu} = \frac{1}{2} \left(\partial_{\mu} h \right)^2 + \frac{g^2}{4} f^2 \sin^2 \left(\frac{\overline{h}}{f} \right) \left(W_{\mu} W^{\mu} + \frac{1}{2c_w} Z_{\mu} Z^{\mu} \right)$$
$$\Rightarrow v = 246 \text{ GeV} = f \sin \left(\frac{\langle h \rangle}{f} \right) \equiv f \sin(\epsilon).$$

Note: In the above, the Higgs multiplet is parameterized as a Goldstone multiplet and it is *assumed* that a Higgs potential is induced which leads to EWSB.

Concrete realizations c.f. e.g. Review by Contino [2010], Panico et al. [2012],

Couplings of the Higgs to the quark sector (most importantly to the top) explicitly break the SO(5) symmetry

 \Rightarrow couplings to the top sector induce an effective potential for the Higgs which induces EWSB.

Partners in the fourplet Partners in the singlet

How to include the quarks?

In the SM, the Higgs multiplet

- induces EWSB (✓ in CHM),
- provides a scalar degree of freedom (✓ in CHM),
- generates lepton masses via Yukawa terms (← implementation in CHM?).

One solution [Kaplan (1991)]: Include elementary fermions q as incomplete linear reps of SO(5) which couples to the strong sector via

 $\mathcal{L}_{mix} = y\overline{q}_{l_{\mathcal{O}}}\mathcal{O}^{l_{\mathcal{O}}} + \text{h.c.}$

where \mathcal{O} is an operator of the strongly coupled theory in the rep. $I_{\mathcal{O}}$. Note: The Goldstone matrix $U(\Pi)$ non-linearly under SO(5), but linear under the SO(4) subgroup $\rightarrow \mathcal{O}^{I_{\mathcal{O}}}$ has the form $f(U(\Pi))\mathcal{O}'_{fermion}$.

Simplest choice:

$$\begin{split} \overline{q}_L^5 &= \frac{1}{\sqrt{2}} \left(-i\overline{d}_L, \overline{d}_L, -i\overline{u}_L, 0 \right), \\ \overline{u}_R^5 &= (0, 0, 0, 0, \overline{u}_R), \\ \overline{\psi} &= \left(\overline{Q}, \overline{\widetilde{U}} \right) &= \left(-i\overline{D} + i\overline{X}_{5/3}, \overline{D} + \overline{X}_{5/3}, -i\overline{U} - i\overline{X}_{2/3}, -\overline{U} + \overline{X}_{2/3}, \sqrt{2}\overline{\widetilde{U}} \right). \end{split}$$

Partners in the fourplet Partners in the singlet

How to include the quarks?

Remarks:

- The choice of rep. for the LH quarks and its partners is not unique. Other embeddings which are sometimes discussed:
 - \circ 14 = 1 \oplus 4 \oplus 9
 - \circ 10 = 4 \oplus 6

Main qualitative new feature:

Additional partner particles, some of which have exotic charges.

 Another "as minimal" embedding as considered here: embed *q_L* and ψ in the same way and *u_R* as a chiral *SO*(5) singlet.
 ⇒ "(fully) composite right-handed quarks *c.t. e.g.* Rattazzi *et al.* [2012] (We studied this second case in detail → results in the backup)

artners in the fourplet artners in the singlet

Back to the partially composite quarks in the **5**. BSM particle content: $\overline{\psi} = \left(\overline{Q}, \overline{\tilde{U}}\right)$.

	U	X _{2/3}	D	X _{5/3}	Ũ
<i>SO</i> (4)	4	4	4	4	1
<i>SU</i> (3) _c	3	3	3	3	3
$U(1)_X$ charge	2/3	2/3	2/3	2/3	2/3
EM charge	2/3	2/3	-1/3	5/3	2/3

Fermion Lagrangian:

 $\mathcal{L}_{comp} = i \,\overline{Q} (D_{\mu} + ie_{\mu}) \gamma^{\mu} Q + i \overline{\tilde{U}} \overline{\mathcal{D}} \tilde{U} - M_{4} \overline{Q} Q - M_{1} \overline{\tilde{U}} \tilde{U} + \left(i c \overline{Q}^{i} \gamma^{\mu} d_{\mu}^{i} \tilde{U} + \text{h.c.} \right),$ $\mathcal{L}_{el,mix} = i \,\overline{q}_{L} \overline{\mathcal{D}} q_{L} + i \,\overline{u}_{R} \overline{\mathcal{D}} u_{R} - y_{L} f \overline{q}_{L}^{5} U_{gs} \psi_{R} - y_{R} f \overline{u}_{R}^{5} U_{gs} \psi_{L} + \text{h.c.},$

Derivation of Feynman rules:

- expand d_{μ} , e_{μ} , U_{gs} around $\langle h \rangle$,
- diagonalize the mass matrices,
- match the lightest up-type mass with the SM quark mass (m_u or m_c) \rightarrow this fixes y_L in terms of the other parameters ($y_R \sim 1 \Rightarrow y_L \ll 1$)
- calculate the couplings in the mass eigenbasis.

Partners in the fourplet Partners in the singlet

Partners in the fourplet

Lets first consider the limit $M_1 \to \infty$.

 \tilde{U} decouples, and the remaining quark partners form a 4 of SO(4).

Mass eigenstates:

 $U_{p/m} = (1/\sqrt{2}) (U \pm X_{2/3}), D, X_{5/3}.$

Masses:

$$m_{U_{\rho}} = m_D = m_{X_{5/3}} = M_4, m_{U_m} = \sqrt{M_4^2 + (y_R f \sin(\epsilon))^2}, \text{ with } \epsilon = \langle h \rangle / f.$$

"Mixing" couplings:

$$g_{WuX} = -g_{WuD} = -c_w g_{ZuU_p} = \frac{g}{2} \cos \epsilon \sin \varphi_4,$$
$$\lambda_{huU_m} = y_R \cos \epsilon \cos \varphi_4.$$

with

$$\tan\varphi_4\equiv\frac{y_Rf\sin\epsilon}{M_4}.$$

Partners in the fourplet Partners in the singlet

Partners in the fourplet

Production mechanisms (shown here: $X_{5/3}$ production)

(b) EW pair production

(a) EW single production Decays:

- $X_{5/3} \rightarrow W^+ u$ (100%),
- $D \to W^- u$ (100%),
- *U_p* → *Zu* (100%),
- $U_m \rightarrow hu$ (100%).

(c) QCD pair production

Partners in the fourplet Partners in the singlet

NOTE:

- The EW production mechanisms strongly differs for 1st, 2nd, and 3rd generation partners due to the differing PDFs for *u*, *c*, *t* in the proton.
- The final states (search signatures) differ:
 - 1st generation partners: u, d quarks in the final state \rightarrow jets.
 - \circ 2nd generation partners: $c, s \rightarrow$ jets, potentially tagable c in the future
 - 3nd generation partners: $t, b \rightarrow$ well distinguishable from jets

We focus on 1st and 2nd family partners (*c.f.* Rattazzi *et al.* [2012] for 3rd family partners). \rightarrow relevant measured final states:

• Single production: Wjj, Zjj

[D0 Collaboration], Phys. Rev. Lett. 106, 081801 (2011) [CDF Collaboration], CDF/PUB/EXOTIC/PUBLIC/1026 [ATLAS Collaboration], ATLAS-CONF-2012-137 (4.64 tb^{-1} 7 TeV) [CMS Collaboration], CMS-PAS-EXO-12-024 (19.8 tb^{-1} 8 TeV)

• Pair production: WWjj, ZZjj, hhjj

[D0 Collaboration], Phys. Rev. Lett. 107, 082001 (2011) [CDF Collaboration], Phys. Rev. Lett. 107, 261801 (2011) [ATLAS Collaboration], Phys. Rev. D 86, 012007 (2012) (1.04 bb^{-1} 7 TeV) [CMS Collaboration], CMS-PAS-EXO-12-042 (19.6 bb^{-1} 8 TeV); Leptoquark search, final state: $\mu\mu jj$)

Partners in the fourplet Partners in the singlet

Determining bounds from searches

To determine the bounds from Tevatron, ATLAS and CMS searches we

- implement the model [FeynRules2 → MadGraph5 (using CTEQ6L)],
- simulate the BSM signals on parton level,
- compare with the bounds established by the experimental searches.

Partners in the fourplet Partners in the singlet

Determining bounds from searches

[JHEP 02 (2014) 055]. analysis for bottom partners is under way [TF, Sang Eun Han, Jeong Han Kim, Seung Joon Lee]

Partners in the fourplet Partners in the singlet

Partners in the singlet

Now lets look at the opposite limit: M_1 finite and $M_4 \rightarrow \infty$. Then, all fourplet states decouple, and the only remaining BSM state is \tilde{U} .

Mass: $m_{\tilde{U}} = \sqrt{M_1^2 + (y_R f \cos(\epsilon))^2}$

only "mixing" coupling:

 $\lambda_{hu\tilde{U}} = \mathbf{y}_{R} \sin \epsilon \cos \varphi_{1},$

with

$$\tan \varphi_1 \equiv \frac{y_R f \cos \epsilon}{M_1}.$$

Production: pair-production (QCD and EW)

Decay: $\tilde{U} \rightarrow hj$ (100%)

Most promising signal: $pp \rightarrow hhjj$. But there are no ATLAS or CMS searches for this channel, so far! \Rightarrow Only "theory" bound currently: $m_{\bar{U}} > m_h$ (otherwise Higgs BR are modified) Other option: Deviations in $pp \rightarrow h(hjj) \rightarrow \gamma\gamma X$ or $b\bar{b}X$ *i.e.* modifications to SM Higgs signals and their angular and p_T distributions. Composite Higgs model: general setup Partially composite quarks Conclusions and Outlook Backup Partners in the fourplet Partners in the singlet

Constraining Partners in the singlet [TF, J.H. Kim, S.J. Lee, S.H. Lim, arXiv:1312.5316]

BSM production channels which yield Higgs bosons:

Note: Processes (a)-(c) produce one or two partner quarks which decay into a boosted Higgs (if $M_{U_h} > m_h$) and a light quark.

- Unlike SM produced Higgses, this typically yields high p_T Higgses.
- The BSM processes yield one (or more) high p_T jets in the final state.

Partners in the fourplet Partners in the singlet

Constraining Partners in the singlet

ATLAS provides measurements of differential cross sections of the Higgs di-photon decay, where bounds on the $p_T^{\gamma\gamma}$, N_{jets} , and p_T^{j1} distributions are given [ATLAS-CONF-2013-072].

We simulate these distributions for BSM Higgs production and subsequent $H \rightarrow \gamma \gamma$ decay.

Example: $p_T^{\gamma\gamma}$, N_{jets} , and p_T^{j1} distributions for $M_{U_h} = 300 \text{ GeV}$ and $y_R = 1.1$.

Partners in the fourplet Partners in the singlet

Constraining Partners in the singlet

Performing a bin-by-bin χ^2 test on the BSM distributions, we obtain a bound on the composite quark parameter space.

(conservative; ignoring overflow bins)

(projection: including overflow bins)

Conclusions

- Composite Higgs models provide a viable solution to the hierarchy problem and generically predict partner states to the fermions.
- The phenomenology of light quark partners strongly differs from top-partner phenomenology.
- For partially composite u(c) quarks with partners in the fourplet, we find $M_4^{u/c} \gtrsim 530$ GeV (from QCD pair production), as well as substantially (marginally) enhanced bounds for $M_u(M_c)$ for large $v_p^{u/c}$.
- For partially composite quarks with partners in the singlet, we find $M_{U_h} > 310 \,\text{GeV}$ (from QCD pair production), as well as increased bounds for large y_B , depending on the quark flavor.
- We performed an analogous analyses for fully composite right-handed quarks, for which many of the aspects presented here apply as well.

Outlook / To do

• Our analysis focussed on light quarks. Top- and bottom partners are partially but not systematically discussed elsewhere. *c.t. e.g.* [Rattazzi *et al.* (2012), Mühlleitner *et al.* (2013)] A more comprehensive study of bottom partners is under way.

[Jeong Han Kim, Seung Joon Lee (to appear soon)]

- Improve bounds by more detailed analysis (making use of boosted decays).
 [M. Backovic, TF, S.J. Lee, J. Juknevich, (in progress)]
- In the current analysis, we only considered a single flavor at a time.
 → Include full quark sector, consistent with bounds from flavor physics.

[TF, S.J. Lee, G. Perez, Y. Soreq (in progress)]

• On a more general level:

We only *parameterize* the lowest lying quark partner resonances.

- UV completion? c.f. [Serone et al. (2013)] for first approaches
- Determination of parameters from the strong sector?

o ...

Fully composite up- and charm quarks Some explicit expressions (CCWZ)

Fully composite up- and charm quarks

Fermion embedding

Like before:

$$\overline{q}_{L}^{5} = \frac{1}{\sqrt{2}} \left(-i\overline{d}_{L}, \overline{d}_{L}, -i\overline{u}_{L}, -\overline{u}_{L}, 0 \right) \quad , \quad \psi = \left(\begin{array}{c} Q \\ \widetilde{U} \end{array} \right) = \frac{1}{\sqrt{2}} \left(\begin{array}{c} iD - iX_{5/3} \\ D + X_{5/3} \\ iU + iX_{2/3} \\ -U + X_{2/3} \\ \sqrt{2}\widetilde{U} \end{array} \right)$$

but now, embed u_R as a chiral composite SO(5) singlet.

Fermion-Lagrangian

$$\begin{aligned} \mathcal{L}_{comp}^{f} &= i \,\overline{\psi}(D_{\mu} + ie_{\mu})\gamma^{\mu}\psi + i \,\overline{u}_{R} \mathcal{D} u_{R} - M_{4} \overline{Q} Q - M_{1} \overline{\tilde{U}} \tilde{U} \\ &+ \left[ic_{L} \overline{Q}_{L}^{i} d_{\mu}^{i} \gamma^{\mu} \widetilde{U}_{L} + ic_{R} \overline{Q}_{R}^{i} d_{\mu}^{i} \gamma^{\mu} \widetilde{U}_{R} + \text{h.c.} \right] + \left[ic_{1} \,\overline{Q}_{R}^{i} d_{\mu}^{i} \gamma^{\mu} u_{R} + \text{h.c.} \right], \\ \mathcal{L}_{el+mix}^{f} &= i \,\overline{q}_{L} \mathcal{D} q_{L} - \left[y \, f \left(\overline{q}_{L}^{5} U_{gs} \right)_{i} Q_{R}^{i} + \right. \\ &+ y \, c_{2} \, f \left(\overline{q}_{L}^{5} U_{gs} \right)_{5} u_{R} + y \, c_{3} \, f \left(\overline{q}_{L}^{5} U_{gs} \right)_{5} \widetilde{U}_{R} + \text{h.c.} \right], \end{aligned}$$

1

•

Fully composite up- and charm quarks Some explicit expressions (CCWZ)

Determining bounds from searches

Fully composite up- and charm quarks Some explicit expressions (CCWZ)

Determining bounds from searches

Fully composite up- and charm quarks Some explicit expressions (CCWZ)

Determining bounds from searches

Fully composite up- and charm quarks Some explicit expressions (CCWZ)

Definition of *d* and *e* symbols:

$$\begin{aligned} d^{i}_{\mu} &= \sqrt{2} \left(\frac{1}{f} - \frac{\sin \Pi/f}{\Pi} \right) \frac{\vec{\Pi} \cdot \nabla_{\mu} \vec{\Pi}}{\Pi^{2}} \Pi^{i} + \sqrt{2} \frac{\sin \Pi/f}{\Pi} \nabla_{\mu} \Pi^{i} \\ e^{a}_{\mu} &= -A^{a}_{\mu} + 4 \, i \, \frac{\sin^{2} (\Pi/2f)}{\Pi^{2}} \vec{\Pi}^{i} t^{a} \nabla_{\mu} \vec{\Pi} \end{aligned}$$

 d_{μ} symbol transforms as a fourplet under the unbroken SO(4) symmetry, while e_{μ} belongs to the adjoint representation.

 $\nabla_{\mu}\Pi$ is the "covariant derivative" of the Goldstone field Π

$$\nabla_{\mu}\Pi^{i} = \partial_{\mu}\Pi^{i} - iA^{a}_{\mu}\left(t^{a}\right)^{i}{}_{j}\Pi^{j},$$

 A_{μ} : gauge fields of the gauged subgroup of $SO(4) \simeq SU(2)_L \times SU(2)_R$

$$\begin{aligned} A_{\mu} &= \frac{g}{\sqrt{2}} W_{\mu}^{+} \left(T_{L}^{1} + i T_{L}^{2} \right) + \frac{g}{\sqrt{2}} W_{\mu}^{-} \left(T_{L}^{1} - i T_{L}^{2} \right) \\ &+ g \left(c_{w} Z_{\mu} + s_{w} A_{\mu} \right) T_{L}^{3} + g' \left(c_{w} A_{\mu} - s_{w} Z_{\mu} \right) T_{R}^{3} . \end{aligned}$$

Fully composite up- and charm quarks Some explicit expressions (CCWZ)

Explicit form in unitary gauge:

$$\begin{cases} e_{L}^{1,2} = -\cos^{2}\left(\frac{\overline{h}}{2f}\right) W_{L}^{1,2} \\ e_{L}^{3} = -\cos^{2}\left(\frac{\overline{h}}{2f}\right) W^{3} - \sin^{2}\left(\frac{\overline{h}}{2f}\right) B, \end{cases} \begin{cases} e_{R}^{1,2} = -\sin^{2}\left(\frac{\overline{h}}{2f}\right) W_{L}^{1,2} \\ e_{R}^{3} = -\cos^{2}\left(\frac{\overline{h}}{2f}\right) B - \sin^{2}\left(\frac{\overline{h}}{2f}\right) W^{3} \end{cases}$$

and

$$\begin{cases} d_{\mu}^{1,2} = -\sin(\overline{h}/f) \frac{W_{\mu}^{1,2}}{\sqrt{2}} \\ d_{\mu}^{3} = \sin(\overline{h}/f) \frac{B_{\mu} - W_{\mu}^{3}}{\sqrt{2}} \\ d_{\mu}^{4} = \frac{\sqrt{2}}{f} \partial_{\mu} h, \end{cases}$$