

High1-2014 KIAS-NCTS

Purely leptonic decays of B meson at Belle

Feb. 14th, 2014

Youngmin Yook

Yonsei Univ.

yookym@yhep.yonsei.com

KIAS-NCTS Joint Workshop, High-1 2014

Contents

- Motivation
- Hadronic Tagging Method
- Signal-side Event Selection
- Verification
- Signal Extraction & Branching Ratio

Motivation

(Loose Tagging) Up-to-date results: $B \to \ell \nu$ $BR(B^+ \to e^+ \nu_e) < 9.8 \times 10^{-7} 253 f b^{-1}$ Belle Collab., PLB 647, 67 (2007). $BR(B^+ \to \mu^+ \nu_{\mu}) < 1.0 \times 10^{-6} 426 f b^{-1}$ BABAR Collab., PRD 79, 091101 (2009). (Hadronic Tagging) $BR(B^+ \to e^+ \nu_e) < 5.2 \times 10^{-6}$ $BR(B^+ \to \mu^+ \nu_{\mu}) < 5.6 \times 10^{-6} 342 f b^{-1}$ BABAR Collab., PRD 77, 091104 (2008). @ 90% C.L.

- A clean process for the measurement of f_B , $|V_{ub}|^2$, within the SM.
- Helicity suppression in the SM \rightarrow B. F. $\propto m_{\ell}^2$
- Deviation from the SM may reveal New Physics ! (e.g. 2HDM(type2), lepto-quark)
- Evidences of $B^+ \rightarrow \tau^+ \nu_{\tau}$ from Belle and BABAR experiments.

2HDM type2

$$BR(B^+ \to \ell^+ \nu_\ell)_{2HDM} = BR(B^+ \to \ell^+ \nu_\ell) \times \left(1 - \tan^2 \beta \frac{m_B^2}{m_H^2}\right)^2$$
W. Hou, Phys. Rev. D. 48, 2342 (1993).

Result presented today is on...

An update using full $\underline{\Upsilon(4S)}$ data (772 × 10⁶ *BB* events) / Hadronic tagging on $\underline{\ell} = e, \mu$.

Hadronic Tagging

B-factories

• Precise knowledge of the initial states in e^+e^- collisions.

• $Br(\Upsilon(4S) \to B\overline{B}) > 96\%; w/p_B^* = 380 \text{MeV}/c$

Hadronic Tagging

Definition: Complete reconstruction of a *B*-meson (B_{tag}) in an $Y(4S) \rightarrow B\overline{B}$ decay via hadronic decay channels.

- Obtain the momentum of the signal side *B* meson with no additional effort.
 - Especially important for decays with limited access in the signal side.
 - $B^+ \to X \tau^+ \nu_{\ell}; B \to X \overline{\nu \nu} \overline{\nu} \dots$
- High resolution in kinematical variables with B_{tag} quality control.
- Good continuum suppression.

$$\begin{array}{l} p(e^+) + p(e^-) = p(B) + p(\bar{B}) \\ & \text{Br}(\Upsilon(4S) \rightarrow B\bar{B}) > 96\% \\ p_B^{CM} = 380 \text{MeV}/c : \text{Spherical event shape} \end{array}$$

Hadronic Tagging in $B^+ \rightarrow \ell^+ \nu_\ell$

Excuse me for a little bit of spoiler !

<Untagged Reconstruction>

<Hadronic Tag. Reconstruction>

- The signal lepton candidate's momentum in B_{sig} rest frame. -

N. Satoyama (et al.) (Belle Collaboration), PLB 647, 67 (2007).

In our analysis! : B_{tag} quality

- 615 B^+ channels with hierarchical reconstruction procedure.
- B_{tag} quality control via:

•
$$M_{bc} = \sqrt{(E_{beam}/2)^2 - |\vec{p}_{Btag}|^2} > 5.27 \text{GeV}/c$$

- $\Delta E = E_{Btag} E_{beam}/2 : -0.05 \text{ GeV} < |\Delta E| < 0.05 \text{ GeV}$
- *o_{NB}*: A neural network output.
 - More than one B_{tag} candidate in an event? \rightarrow The highest o_{NB} candidate chosen.
 - $-\log(o_{NB}) < 6$ for quality control.

In our analysis! : B_{tag} quality

- 615 B^+ channels with hierarchical reconstruction procedure.
- B_{tag} quality control via:

•
$$M_{bc} = \sqrt{(E_{beam}/2)^2 - |\vec{p}_{Btag}|^2} > 5.27 \text{GeV}/c$$

- $\Delta E = E_{Btag} E_{beam}/2 : -0.05 \text{ GeV} < |\Delta E| < 0.05 \text{ GeV}$
- *o_{NB}*: A neural network output.
 - More than one B_{tag} candidate in an event? \rightarrow The highest o_{NB} candidate chosen.
 - $-\ln(o_{NB}) < 6$ for quality control.

In our analysis! : ϵ_{tag}

- 615 B^+ channels with hierarchical reconstruction procedure.
- *B_{tag}* quality control via:

•
$$M_{bc} = \sqrt{(E_{beam}/2)^2 - |\vec{p}_{Btag}|^2} > 5.27 \text{GeV}/c$$

- $\Delta E = E_{Btag} E_{beam}/2 : -0.05 \text{ GeV} < |\Delta E| < 0.05 \text{ GeV}$
- *o_{NB}*: A neural network output.
 - More than one B_{tag} candidate in an event? \rightarrow The highest o_{NB} candidate chosen.
 - $-\log(o_{NB}) < 6$ for quality control.
- ϵ_{tag} (*B* tagging efficiency) calibrated to data event by event.
 - A control sample study using $B \to D^{(*)} \ell \nu$ decays.
 - Calibrated in the o_{NB} value and the first hierarchy decay from the B_{tag} .
- $\epsilon_{tag} = 0.30 \ (0.29)\%$ for $B \rightarrow \mu\nu \ (B \rightarrow e\nu)$.

Signal-side Event Selection

Now let's turn our focus to

A high momentum lepton & an invisible neutrino.

Pre-selection of events with a lepton with $p_{\ell}^{LAB} > 1.8 \text{ GeV}/c$. Impact parameter conditions to sort good tracks. (distance from the IP: dr < 0.05cm, |dz| < 1.5cm)

Continuum suppression

- Virtual extermination using $\cos\theta_{thrust}$.
 - $\theta_{thrust}: \angle (B_{tag} \text{ thrust axis, } \vec{p}_{\ell}^*)$

Further BG suppression

•
$$E_{ECL} = E_{Total} - E_{Btag} - E_{\ell}$$

• No extra particles aside from the B_{tag} and the signal ℓ .

Signal Extraction Variable

<Signal Enhanced plot of p_ℓ^B for $B o \mu \nu$ search>

 p_{ℓ}^{B} : The momentum of the signal ℓ at the rest frame of the B_{sig} .

- Sharp-peaking near 2.64 GeV/c due to 2-body decay.
- Very clean signal separation with low BG.

Signal region decision

- -2.5 σ of the main Gaussian component in the histogram fit $< p_{\ell}^{B} < 2.7 \text{ GeV}/c$.
 - $e: 2.606 \text{ GeV}/c < p_{\ell}^B < 2.7 \text{ GeV}/c$
 - μ : 2.604 GeV/ $c < p_{\ell}^{B} < 2.7$ GeV/c

Signal Extraction Variable

<Signal Enhanced plot of p_ℓ^B for $B o \mu \nu$ search>

 p_{ℓ}^{B} : The momentum of the signal ℓ at the rest frame of the B_{sig} .

- Sharp-peaking near 2.64 GeV/c due to 2-body decay.
- Very clean signal separation with low BG.

$$BR = \frac{Y_{data} - N_{bkg}^{MC}}{N_{B\bar{B}} \cdot \epsilon_{signal}}$$

 Y_{data} : Observed data yield in the signal region. N_{bkg}^{MC} : Expected backgrounds in the signal region. $N_{B\overline{B}}$: Initial # of $B\overline{B}$. ϵ_{sig} : Signal selection efficiency

Signal extraction strategy!

 Y_{data} : count the events in the p_{ℓ}^{B} signal region.

 N_{bkg}^{MC} : extrapolate from the background PDF fit to the side band data. The PDF's are obtained from the mode-by-mode histogram template 1D unbinned maximum likelihood fit.

Signal Extraction Variable

<Signal Enhanced plot of p^B_ℓ for $B o \mu \nu$ search>

N^{BG} bkg

Estimation of backgrounds crucial in this study!

- Peaking / heavily influential decays in the signal region treated with dedicated large MC samples.
- $b \to c$ decays, dominant in the low momentum range, composed of over 90% of $B^- \to D^{(*)0} \ell^- \bar{\nu}$.

Expected from the MC histograms (Events)

	Backgrounds: $B \rightarrow \mu \nu$	Backgrounds: $B \rightarrow ev$
$b ightarrow u\ell v$	0.0087 (13.8%)	0.0289 (13.0%)
Other $X_u \ell v$	0	0.0598 (26.9%)
$B^+ o \pi^+ K^0$	0.0410 (65.1%)	0.0612 (27.6%)
$B^+ \to K^+ \pi^0$	0.0133 (21.1%)	0.0631 (28.4%)
$B^+ o \ell^+ u_\ell \gamma$	0	0.0091 (4.1%)
Total	0.063	0.222

 $B \rightarrow \ell \nu \gamma$ according to G. Korchemsky, D. Pirjol, and T.-M. Yan, PRD 61, 114510 (2000) Assumed $BR(B \rightarrow \ell \nu \gamma) = 5.0 \times 10^{-6}$

KIAS-NCTS Joint Workshop, High-1 2014

Background PDFs from histogram template fits

KIAS-NCTS Joint Workshop, High-1 2014

Feb. 14th, 2014 18

Verification

p_{ℓ}^{B} shape calibration

- A control sample study using:
 - $B^+ \to \overline{D}{}^0 \pi^+ : D^0 \to K^- \pi^+ \& D^0 \to K^- (3\pi)^+.$
 - Treat π^+ (primary pion) as ℓ^+ , D^0 as ν_ℓ .
 - Same conditions given for $B^+ \to \ell^+ \nu_{\ell}$ analysis given.

Fitted each distribution and integrated each region.

$$C_{shape} \equiv \frac{N_{sig}(\text{Data} - \text{Bkg})/N_{all}(\text{Data} - \text{Bkg})}{N_{sig}(\text{signal MC})/N_{all}(\text{signal MC})}$$

$$= 0.954^{+0.033}_{-0.031}$$

Obtained BR within 0.2σ deviation compared to the PDG world average. (Including systematic uncertainties from $K\pi$ -ID / C_{shape} / tag / PDF parameters / tracking uncertainties.)

Signal Extraction & Branching Ratio

Systematic Uncertainties

$$BR = \frac{Y_{data} - N_{bkg}^{MC}}{N_{B\bar{B}} \cdot \epsilon_{signal}}$$

- PDF uncertainty in parameters from the fit.
- Branching Ratio uncertainty.

 $N_{bkg}^{MC}(e) = 0.11_{-0.06}^{+0.08}$ events $N_{bkg}^{MC}(\mu) = 0.33_{-0.08}^{+0.10}$ events

• Statistical uncertainty of the experimental data in the sideband region.

Sources	Uncertainty
$N_{B\bar{B}}$	1.4 %
ϵ_{tag} correction	4.2 %
Lepton Identification	2.1 %
Tracking	0.35 %
MC statistics	2.0 %
p^B_ℓ shape	15.2 %
Sum	16.0 %

 $\epsilon_{signal}(e) = 0.091\%$ $\epsilon_{signal}(\mu) = 0.115\%$ A note on the p_{ℓ}^{B} shape!

The number here is based on the preliminary result. The study in p.21 was a modification after the preliminary result was presented, and the updated number will be presented in the paper soon to be submitted. In the updated the systematic uncertainty is reduced at ~6%, along with slightly modified ϵ_{signal} and N_{bkg}^{MC} . Very sorry about that!

Opening the p_{ℓ}^{B} signal region

We observe no experimental data events in the p_{ℓ}^{B} signal region.

	$B^+ \to \mu^+ \nu \mu$	$B^+ \to e^+ \nu_e$
Y _{data}	0	0
ϵ_{signal}	0.115%	0.091%
	(16% unc.)	(16% unc.)
N_{bkg}^{MC}	$0.33\substack{+0.10 \\ -0.08}$	$0.11\substack{+0.08\\-0.06}$
$BR(B^+ \rightarrow$	$\mu^+\nu_{\mu}\big) < 2.5 \times 10^{-10}$	⁻⁶ (90% C.L.)
$BR(B^+ \rightarrow$	$e^+\nu_e) < 3.5 \times 10^{-1}$	⁻⁶ (90% C.L.)

Upper limits calculated based on a frequentist approch, Feldman & Cousins method. (G. J. Feldman and R. D. Cousins, PRD 57, 3878 (1998).)

Summary

- With 772M $B\overline{B}$ events and hadronic tagging method, we search for the purely leptonic rare B meson decays, $B^+ \rightarrow e^+ \nu_e$ and $B^+ \rightarrow \mu^+ \nu_{\mu}$.
- We obtain the most stringent "hadronic tagging method using" constraint, improved by a factor of two.
- The low background study demonstrated shows a promise of hadronic tagging method as a powerful probe for testing the SM and searching for the New Physics.
- The paper draft to be submitted soon with the final results.

BACK UP

Untagged study vs. Hadronic Tag.

- The two extremes of reconstruction.
 - A simple depiction with $B^+ \rightarrow \ell^+ \nu_{\ell}$ search.

 $e^{+} \qquad Y(4S) \qquad V_{\ell}$ $B_{sig} \qquad e^{-} \qquad Y(4S) \qquad P_{e}$ $B_{tag} \qquad D_{\ell}$ K^{-}

<Hadronic Tag. Reconstruction>

Pros: The best knowledge on kinematics in B_{sig} results in high purity.

Cons: Lower efficiency due to prior reconstruction.

@ CACA VONCEI 2014

Had. Tagging Hierarchy

B^+	B^0
$B^+ \rightarrow \bar{D}^0 \pi^+$	$B^0 \rightarrow D^- \pi^+$
$B^+ \rightarrow \bar{D}^0 \pi^+ \pi^0$	$B^0 \rightarrow D^- \pi^+ \pi^0$
$B^+ \rightarrow \bar{D}^0 \pi^+ \pi^+ \pi^-$	$B^0 \rightarrow D^- \pi^+ \pi^+ \pi^-$
$B^+ \rightarrow D^+_S \bar{D}^0$	$B^0 \rightarrow \bar{D}^0 \pi^0$
$B^+ \rightarrow \bar{D}^{0*} \pi^+$	$B^0 \rightarrow D^+_S D^-$
$B^+ \rightarrow \bar{D}^{0*} \pi^+ \pi^0$	$B^0 \rightarrow D^{*-}\pi^+$
$B^+ \rightarrow \bar{D}^{0*} \pi^+ \pi^+ \pi^-$	$B^0 \rightarrow D^{*-}\pi^+\pi^0$
$B^+ \rightarrow \bar{D}^{0*} \pi^+ \pi^+ \pi^- \pi^0$	$B^0 \rightarrow D^{*-} \pi^+ \pi^+ \pi^-$
$B^+ \rightarrow D_S^{+*} \bar{D}^0$	$B^0 \to D^{*-} \pi^+ \pi^+ \pi^- \pi^0$
$B^+ \rightarrow D^+_S \bar{D}^{0*}$	$B^0 \rightarrow D_S^{+*}D^-$
$B^+ \rightarrow D_S^{+*} \bar{D}^{0*}$	$B^0 \rightarrow D_S^+ D^{*-}$
$B^+ \rightarrow \bar{D}^0 K^+$	$B^0 \rightarrow D_S^{+*} D^{*-}$
$B^+ \rightarrow D^- \pi^+ \pi^+$	$B^0 \rightarrow J/\psi K^0_S$
$B^+ \rightarrow J/\psi K^+$	$B^0 \rightarrow J/\psi K^+ \pi^-$
$B^+ \rightarrow J/\psi K^+ \pi^+ \pi^-$	$B^0 \rightarrow J/\psi K^0_S \pi^+ \pi^-$
$B^+ \rightarrow J/\psi K^+ \pi^0$	
$B^+ \rightarrow J/\psi K^0_S \pi^+$	

TABLE XV. Stage 4 - All B modes

D^0	D^+	D_S
$D^0 \rightarrow K^- \pi^+$	$D^+ \rightarrow K^- \pi^+ \pi^+$	$D^+_S \rightarrow K^+ K^0_S$
$D^0 \rightarrow K^- \pi^+ \pi^+ \pi^-$	$D^+ \rightarrow K^0_S \pi^+$	$D^+_S \rightarrow K^+ \pi^+ \pi^-$
$D^0 \rightarrow K^- \pi^+ \pi^0$	$D^+ \rightarrow K^0_S \pi^+ \pi^0$	$D_S^+ \rightarrow K^+ K^- \pi^+$
$D^0 \rightarrow \pi^+\pi^-$	$D^+ \rightarrow K^- \pi^+ \pi^+ \pi^0$	$D^+_S \rightarrow K^+ K^- \pi^+ \pi^0$
$D^0 \rightarrow \pi^+ \pi^- \pi^0$	$D^+ \rightarrow K^0_S \pi^+ \pi^+ \pi^-$	$D^+_S \ \rightarrow K^+ K^0_S \pi^+ \pi^-$
$D^0 \rightarrow K^0_S \pi^0$	$D^+ \rightarrow K^+ K^- \pi^+$	$D^+_S \ \rightarrow K^- K^0_S \pi^+ \pi^+$
$D^0 \rightarrow K^0_S \pi^+ \pi^-$	$D^+ \rightarrow K^+ K^- \pi^+ \pi^0$	$D^+_S \rightarrow K^+ K^- \pi^+ \pi^+ \pi^-$
$D^0 \to K^0_S \pi^+ \pi^- \pi^0$		$D_S^+ \rightarrow \pi^+ \pi^+ \pi^-$
$D^0 \rightarrow K^+ K^-$	$J/\psi \rightarrow e^- e^+$	
$D^0 \rightarrow K^+ K^- K^0_S$	$J/\psi \rightarrow \mu^- \mu^+$	

TABLE XIII. Stage 2 - All D and J/ψ modes

D^{*+}	D^{*0}	D_S^*		
$D^{+*} \rightarrow D^0 \pi^+$	$D^{0*} \rightarrow D^0 \pi^0$	$D_S^{+*} \rightarrow D_S^+ \gamma$		
$D^{+*} \rightarrow D^+ \pi^0$	$D^{0*} \rightarrow D^0 \gamma$			

TABLE XIV. Stage 3 - all D^* modes

延出라.

Variables used in the NN training

• Only including the variables for the higher hierarchy reconstruction due to the page-shortage reason.

Name	Variable
sumChldNB	Sum of the NeuroBayes outputs of all of the children
prodChildNB	Product of the NeuroBayes outputs of all of the children
ptot	
ChN_ptot	p of child N
ChN_NBout	NeuroBayes output of child N
ChN_PseudoHelAng	Angle between the child momentum in the mother's rest
	frame and the mother's direction in the $\Upsilon(4S)$ rest frame.
	For D meons, this really is a good approximation of the
	helicity angle.
ChN_hash	Decay hash of child N
ChN_Mass	Mass of child N
ChMN_Angle	Angle between children N and M in the CMS
ChMN_InvMassScaled	Invariant mass of children N and M, scaled to the maximum
	(=1) and minimum $(=0)$ possible theoretical value.
mom_dir_dev	Angle between the momentum of the D meson and the line
	connecting the IP and the fitted D vertex.
dist_to_IP	Distance of the fitted D vertex and the IP
sig_dist_to_IP	Significance of the distance of the fitted D vertex and the
	IP
deltaE	ΔE
Dstar_D_massdiff	$M(D^*) - M(D)$
D_hash_from_1st_dstar	Decay hash from the first D^* meson
D_hash_from_2nd_dstar	Decay hash from the second D^* meson
CosThetaB	$\cos \theta_B$
ChN_D_dist	Distance of closest approach of a track from the B decay to
	the fitted vertex of the D meson

延**:** 人

TABLE XXIII. Variables used in the stage 2, 3 and 4 trainings

 ϵ_{tag} calibration

<with these definitions>

 $c(x) = \frac{f^{\mathrm{DATA}}(x)}{f^{\mathrm{MC}}(x)} = C(x) - \frac{F^{\mathrm{MC}}(x)}{f^{\mathrm{MC}}(x)} \frac{\mathrm{d}C(x)}{\mathrm{d}x}$

The correlation factor can be expressed as a function of NB_{out} . This is done for each tagged decay structure.

overall MM2 distribution of the specified signal

o_{NB} in terms of Efficiency and Purity

FIG. 19. Purity-efficiency plot for B^+ mesons

Pre-selection of high mmt tracks

- Pre-selection condition.
- Actually for the file size management.

dr distribution

Muon mode. Nearly identical distribution for the electron mode.

dz distribution

Muon mode. Nearly identical distribution for the electron mode.

Electron mode p_{ℓ}^{B} distribution

Signal enhanced plot for the electron mode.

Magnified

Background PDF's for e-mode

Sideband comparison: e-mode

延**HEP**

$$\Sigma \chi^2/\text{n.d.f.}$$
$$= 0.39$$

Control sample study: Kpi + K(3pi) mode

Cshape : 0.9542 (+/- MC:) 0.0065 / 0.0066 (+/- DAT:) 0.0318 / 0.0302 (+/- KPI:) 0.0053 / 0.0052 Cshape comb : 0.9542 (+/-) 0.0328874 / 0.0313471

no calib Nsig : 192.793 (+/- MC:) 5.057 / 5.053 (+/- KPI:) 6.442 / 6.44 (+/- TAG:) 8.09731 / 8.09731 (+/- TRK:) 0.674776 / 0.674776 no calib Nsig comb : 192.793 (+/-) 11.5367 / 11.5338

no calib Eff : 0.000434552 (+/- prev:) 2.60034e-05 / 2.59969e-05

no calib N*e : 335293 (+/- prev:) 20063.8 / 20058.8 (+/- BB:) 4694.1 / 4694.1 no calib N*e comb : 335293 (+/-) 20605.6 / 20600.7

Nsig : 183.963 (+/- prev:) 11.0083 / 11.0055 (+/- cal:) 6.34046 / 6.0435 Nsig comb : 183.963 (+/-) 12.7037 / 12.5557

Eff : 0.00041465 (+/-) 2.86339e-05 / 2.83003e-05

N*e : 319936 (+/- pre:) 22093.4 / 21836 (+/- bb:) 4479.11 / 4479.11 N*e combined : 319936 (+/-) 22542.9 / 22290.7

no calib BR : 0.000531908 (+/-) 6.08176e-05 / 6.09299e-05

calibrated BR : 0.000557438 (+/-) 6.65695e-05 / 6.64285e-05

PDG BR : 0.0005752 (+/-) 1.7e-05 / 1.65e-05

迎日日日

NMC

Calculated as

 $BG_{est} = N_{sideband(Datafitted)} \times \frac{S(MC)_{signal}}{S(MC)_{sideband}}$

where S/S stands for the rate of events in the signal region to the events in the sideband region.

N_{bkg}^{MC} presented in this talk

- Based on less categorization of BG.
- The uncertainty calculation.
 - Varied the fit parameters by 1σ and summed the effects.
 - The amount of PDG value varied for the well measured modes.
 - Conservative PDG uncertainty assumption for the rest. (+200% -50%, +/- 50% for lnugamma BG).

The uncertainty in S/S of $N_{bk,g}^{MC}$

				PDF error	PDF	parameter	$S(MC)_{signal}/S(MC)_{sideband}$
				$B\bar{B}$	Exponential	slope	$0.012^{+0.00023}_{-0.00014}$
						normalization	$0.012_{-0.00098}^{+0.0012}$
DDE orror	DDE	paramotor	$S(MC) = \langle S(MC) \rangle$	$b \rightarrow u \ell \nu$	B.Gaussian	mean	$0.012^{+0.00088}_{-0.00074}$
		parameter	$S(MC)_{signal}/S(MC)_{sideband}$			σ	$0.012^{+0.0014}_{-0.0012}$
BB	Exponential	siope	0.0090 ± 0.00017			normalization	$0.012 \pm I.S.$
		normalization	0.0090 - 0.00076	RAREB	Argus	offset	$0.012^{+0.00041}_{-0.00015}$
$b \rightarrow u \ell \nu$	B.Gaussian	mean	0.0090 - 0.0015			shape	$0.012 \pm I.S.$
		$\sigma(\text{left})$	0.0090 - 0.0018			normalization	$0.012 \pm I.S.$
		σ (right)	$0.0090^{+0.0034}_{-0.0024}$	$B \to \mu \nu \gamma$	B.Gaussian	mean	0.012 ± 0.00044
		normalization	$0.0090 \pm I.S.$			σ (left)	$0.012^{+0.0018}_{-0.00068}$
RAREB	Argus	offset	$0.0090 \pm I.S.$			σ (right)	$0.012^{+0.00028}_{-0.00030}$
		shape	$0.0090 \pm I.S.$			normalization	$0.012_{-0.00020}^{+0.00020}$
		normalization	$0.0090 \pm 1.S.$	$B^+ \to \pi^+ K^0$	Gaussian1	mean	$0.012^{+0.00036}_{-0.00043}$
$B \to e \nu \gamma$	B.Gaussian	mean	0.0090 - 0.00075			σ	$0.012^{+0.00023}_{-0.00018}$
		σ (left)	$0.0090 \stackrel{+0.00021}{-0.00017}$		Gaussian2	mean	$0.012 \pm I.S.$
		σ (right)	$0.0090^{+0.00051}_{-0.00053}$			σ	$0.012 \pm I.S.$
		normalization	0.0090 ± 0.00020			normalization	0.012 ± 0.00097
$B^+ \to \pi^+ K^0$	Gaussian	mean	$0.0090 \pm I.S.$	$B^+ \to K^+ \pi^0$	Gaussian	mean	$0.012^{+0.00014}_{-0.00015}$
		σ	$0.0090 \pm I.S.$			σ	$0.012 \pm I.S.$
		normalization	0.0090 ± 0.00079			normalization	0.012 ± 0.00019
TOTAL(PDF uncertainty)			$0.0090^{+0.0048}_{-0.0032}$	TOTAL(PDF uncertainty)			$0.012^{+0.0030}_{-0.0022}$
PDG error			$S(MC)_{signal}/S(MC)_{sideband}$				
$Bar{B}$			$0.0090^{+0.0035}_{-0.0032}$	PDG error			$S(MC)_{signal}/S(MC)_{sideband}$
$b \rightarrow u \ell \nu$			$0.0090^{+0.00056}_{-0.00047}$	$Bar{B}$			$0.012^{+0.0058}_{-0.0047}$
RAREB			$0.0090^{+0.00015}_{-0.00028}$	$b \rightarrow u \ell \nu$			$0.012 \pm I.S.$
$B \to e \nu \gamma$			$0.0090^{+0.0014}_{-0.0015}$	RAREB			$0.012^{+0.00015}_{-0.00028}$
$B^+ \to \pi^+ K^0$			$0.0090 \pm I.S.$	$B \to \mu \nu \gamma$			0.012 ± 0.0015
TOTAL(PDG uncertainty)			$0.0090^{+0.0039}_{-0.0035}$	$B^+ \to \pi^+ K^0$			0.012 ± 0.00019
				$B^+ \to K^+ \pi^0$			$0.012 \pm I.S.$
GRAND TOTAL			$0.0090\substack{+0.0061\\-0.0048}$	TOTAL(PDG uncertainty)			$0.012^{+0.0060}_{-0.0050}$
	1	1	1	GRAND TOTAL			$0.012^{+0.0067}_{-0.0054}$

 $B \rightarrow e \nu$

延HEP 人 $B \rightarrow \mu \nu$

KIAS-NCTS Joint Workshop, High-1 2014

The uncertainty in $N_{sideband}$ of N_{bkg}^{MC}

Stat Uncertainty	Data Statistic	13.52 ± 3.61	Stat Uncertainty	Data Statistic	22.09 ± 4.60
PDG Uncertainty	$B\bar{B}$	$13.52^{+0.16}_{-0.17}$	PDG Uncertainty	$B\bar{B}$	$22.09^{+0.33}_{-0.39}$
7	$b \rightarrow \mu \ell \nu$	$1352^{+0.056}$		$b \to u \ell \nu$	$22.09\substack{+0.071 \\ -0.093}$
	BARER	$1250^{-0.066}$ $1250^{+0.0012}$		RAREB	$22.09\substack{+0.025\\-0.047}$
		10.02 - 0.0007 10 $r_0 + 0.071$		$B \to e \nu \gamma$	22.09 ± 0.11
	$B \to e\nu\gamma$	$13.52_{-0.069}$		$B^+ \to \pi^+ K^0$	$22.09^{+0.0057}_{-0.0058}$
	$B^+ \to \pi^+ K^0$	13.52 ± -0.0009		$B^+ \to K^+ \pi^0$	22.09 ± 0.0008
	TOTAL	$13.52^{+0.18}_{-0.20}$		TOTAL	$22.09^{+0.35}_{-0.42}$
GRAND TOTAL		$13.52^{+3.61}_{-3.62}$	GRAND TOTAL		$22.09_{-4.62}^{+4.61}$

 $B \to e \nu$

 $B \rightarrow \mu \nu$

E-id / Mu-id

- E-id: Likelihood function of
 - Cluster Energy in the ECL
 - Track mmt in the CDC/SVD
 - dE/dx in the CDC
 - Position/shower shape of the cluster in the ECL
 - Response from the ACC
- Mu-id: hit position/depth penetrated at the KLM

