

Cheng-Wei Chiang (蔣正偉) National Central University Academia Sinica National Center for Theoretical Sciences

In collaboration with T. Nomura, J. Tandean PRD87, 073004 (2013) JHEP01, 183 (2014)

EVIDENCE OF BSM

• Celestial evidence of DM (familiar ones):

EVIDENCE OF BSM

Celestial / terrestrial evidence: neutrino mass

ONE PROPERTY IN COMMON

Both DM and neutrinos are difficult to see (catch in detectors)

WHAT IS ESSENTIAL?

What is essential is invisible to the eye.

"The Little Prince" - Antoine de Saint-Exupéry

INTRODUCING THE ELEPHANT

• When there's an elephant in the room, introduce them.

--- Randy Pausch, *The Last Lecture*

EXAMINING ELEPHANT BY THE BLIND

EVERYONE HAS HIS OWN STORY

OURSTORY

- Model with Z₂ symmetry emerged from U(1)
 scalar DM
- Model with Z₂ symmetry emerged from SU(2)
 non-Abelian vector DM
- Summary

MODEL I

HUMBLE CRITERIA OF MODEL

- Stabilized DM candidate
- Simplest gauge group extension
- Minimal new particle contents
- Generating neutrino mass

THE MODEL

- Extend SM gauge group by extra $U(1)_{\zeta}$
- Add 3 RH neutrinos and 2 complex scalar fields, S and D
- Anomaly cancellation demands U(1)_ζ nothing but U(1)_{B-L}
 G_{SM} × U(1)_{B-L}
- Quantum number assignment:

	$f_{\rm SM}$	$ u_{kR} $	Н	S	D	
SU(2), U(1) _Y	g^f_{SM}	1, 0	2, 1/2	1, 0	1, 0	
$\mathrm{U}(1)_{\zeta} \ [Z_2]$	ζ_f [-]	-1 [-]	0 [+]	2 [+]	1 [-]	

Table 1: Charge assignments of the fermions and scalars in the model. $f_{\rm SM}$ $(g_{\rm SM}^f)$ denotes SM fermions (their assignments) and H the usual complex doublet. For quarks and leptons, $\zeta_f = 1/3$ and -1, respectively.

DISCRETE GAUGE SYMMETRY

• New scalar Lagrangian:

Krauss, Wilczek 1989 Nakayama, Takahashi, Yanagida 2011

$$\mathcal{L} = (\mathcal{D}^{\mu}D)^{\dagger} \mathcal{D}_{\mu}D + (\mathcal{D}^{\mu}S)^{\dagger} \mathcal{D}_{\mu}S - \mathcal{V}$$

$$\mathcal{D}_{\mu} = \partial_{\mu} + ig_{\zeta}\zeta Z'_{\mu}$$

$$\textbf{Zero VEV to maintain Z_2 induces nonzero \langle S \rangle$$

$$and breaks U(1)_{B-L}$$

$$\mathcal{V} = \mu_D^2 |D|^2 - \mu_S^2 |S|^2 + \mu_{DS} (D^2 S^{\dagger} + \text{h.c.})$$

$$+ 2\lambda_{DS} |D|^2 |S|^2 + 2 (\lambda_{DH} |D|^2 + \lambda_{HS} |S|^2) H^{\dagger} H$$

$$+ \lambda_D |D|^4 + \lambda_S |S|^4 + (\lambda_H H^{\dagger} H - \mu_H^2) H^{\dagger} H$$

$$all \lambda's > 0 \text{ for vacuum stability} \quad essential to the breaking U(1)_{B-L} \rightarrow Z_2 \quad S-H \text{ mixing, assumed to be negligible}$$

SCALAR DM

• Scalar VEV's:

$$\langle H \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v_H \end{pmatrix} \ , \ \ \langle S \rangle = \frac{v_S}{\sqrt{2}}$$

• Mass eigenstates of D = $(D_R + i D_I)/\sqrt{2}$ (both dubbed darkons):

$$m_{D_R,D_I}^2 = \mu_D^2 + \lambda_{DH} v_H^2 + \lambda_{DS} v_S^2 \pm \sqrt{2} \,\mu_{DS} \,v_S > 0$$

Consider nearly-degenerate case (μ_{DS} > 0 and ~ 0)
 D_I as WIMP DM (~ simplest darkon) Silveria, Zee 1985
 Coannihilation with D_R possible

NEUTRINO MASS

Neutrino sector contains both Dirac and Majorana terms:

 Majorana neutrino mass is generated through usual Type-I seesaw.

A WORD ABOUT HIGGSES

- Physical h and s are almost purely from H and S, respectively, under our assumption of negligible mixing
- Mass eigenvalues

$$M_{h,s}^2 \simeq 2\lambda_{H,S} \, v_{H,S}^2$$

- M_h fixed at 125 GeV
- M_s is multi-TeV in view of RH neutrino's Majorana mass, provided all λ 's are of O(1)

CONSTRAINTS ON GAUGE COUPLING

- Z' mass induced purely by S: $m_{Z'} = 2g_{\zeta}v_S$ m no Z-Z' mixing at tree level
- $e^+e^- \rightarrow Z' \rightarrow \ell^+\ell^- @ LEP-II: \sigma + A_{FB}$
- pp \rightarrow Z' \rightarrow ℓ + ℓ -X @ LHC 7 TeV (4.5/fb): σ

RELIC DENSITY OF DM

- Assume mass degeneracy between darkons
- Employ approximate Boltzmann equation solution

$$\Omega_{D}h_{0}^{2} = \frac{1.07 \times 10^{9}}{\sqrt{g_{*}} m_{\mathrm{Pl}} J \text{ GeV}} \qquad J = \int_{x_{f}}^{\infty} dx \frac{\langle \sigma_{\mathrm{eff}} v_{\mathrm{rel}} \rangle}{x^{2}} = J_{Z'} + J_{h}$$
Hubble constant in
units of 100/km/s/Mpc $x_{f} = \ln \left[0.038 g_{\mathrm{eff}} m_{D} m_{\mathrm{Pl}} \langle \sigma_{\mathrm{eff}} v_{\mathrm{rel}} \rangle (g_{*} x_{f})^{-1/2} \right]$

$$\sigma_{\mathrm{eff}} \simeq \frac{1}{4} \left(2\sigma_{IR} + \sigma_{II} + \sigma_{RR} \right) \qquad \text{darkon's effective \# of} \quad \text{dof's below} \text{freeze-out temp T}_{f}$$

RELIC DENSITY CONSTRAINT

• Employ 90%-CL range:

$0.092 \leq \Omega_D h_0^2 \leq 0.118$ wmap 2011

• Reference value $m_{Z'} = 300$ GeV as an example:

DM-NUCLEON SCATTERING

Scattering cross section for direct detection

Cheng, CWC 2012

- darker region: purely Higgs; lighter region: Higgs + Z'
- Only some space below 50 GeV ruled out by data
- Higgs dominant in small m_D region
- Z' dominant for $m_D \gtrsim m_h$, also allowed by data
- Wait for XENON1T to probe

INVISIBLE HIGGS DECAYS

- Invisible h \rightarrow DD decays possible if $m_D < m_h/2$
- hDD coupling $\propto \lambda_{\text{DH}} v_{\text{H}}$
- BR($h \rightarrow inv$) ≤ 0.2 from LHC data Giardino, Kannike, Raidal, Strumia 2012

BR(h→DD) large even if h subdominant in DD annihilation

 hDD coupling more constrained for m_D < m_h/2

MODEL II

RESONANCE RELATION

- Both direct DM search and Higgs data favor Z'-dominated DM annihilation.
- All assumptions in previous model are acceptable except for one, namely, resonance mass relation between darkons and Z'.
- Is it possible to obtain resonance mass relation more naturally, while keeping gauge structure and representations as simple as possible?

IMPROVED MODEL

- Extend SM gauge group by $SU(2)_X \times U(1)_{B-L}$
- Add 3 RH neutrinos, 1 5-plet scalar fields (Φ_5), 1 singlet scalar (S), 3 SU(2) gauge bosons (X_μ , X^*_μ , C_μ), and 1 U(1) gauge boson (E_μ)
- Anomaly cancellation satisfied • $G_{SM} \times SU(2)_X \times U(1)_{B-L}$ $L \rightarrow Z_2^X$: even/odd T_{3X} component
- Quantum number assignment:

	$f_{ m SM}$	ν_R	Η	S	ϕ_2	ϕ_1	ϕ_0	ϕ_{-1}	ϕ_{-2}	X	X^{\dagger}	C_3	E
$\mathrm{SU}(2)_X \left[\mathrm{U}(1)_{B-L}\right]$	$1 \left[B - L \right]$	1[-1]	1 [0]	1[2]	5[2]	5[2]	5[2]	5[2]	5[2]	3 [0]	3[0]	3 [0]	1 [0]
T_{3X}	0	0	0	0	2	1	0	-1	-2	1	-1	0	0
Z_2^X	+	+	+	+	+	-	+	_	+	_	_	+	+

TABLE I: The charge assignments under $SU(2)_X \times U(1)_{B-L}$ and Z_2^X parity of the fermions, scalars and new gauge bosons in the model, with f_{SM} referring to SM fermions, $X = (C_1 - iC_2)/\sqrt{2}$, and T_{3X} denoting the eigenvalue of the third generator of $SU(2)_X$.

SYMMETRY BREAKING

- Since ⟨Φ₅⟩ ≠ 0 occurs via its T_{3X} = 2 component, Z₂^X symmetry emerges naturally as subgroup of SU(2)_X
 stabilizing X and X[†] as DM candidates
 take Z₂^X-odd scalars to be more massive
- Z_2^{B-L} is remnant of U(1)_{B-L} after $\langle S \rangle \neq 0$ as before, but does not play any role in stabilizing X

NEW GAUGE BOSONS

• X and X⁺:

$$X = \frac{1}{\sqrt{2}} \left(C_1 - iC_2 \right) , \quad X^{\dagger} = \frac{1}{\sqrt{2}} \left(C_1 + iC_2 \right)$$

- W boson-like, but electrically neutral
- sub-TeV mass $m_X^2 = g_X^2 v_\Phi^2$

•
$$Z_{L}$$
 and Z_{H} :

$$\begin{pmatrix} Z_{L} \\ Z_{H} \end{pmatrix} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} C_{3} \\ E \end{pmatrix}$$

$$|\theta| \simeq \frac{g_{X}}{g_{B-L}} R_{v} \simeq R_{v}$$

$$|\theta| \simeq \frac{g_{X}}{g_{B-L}} R_{v} \simeq R_{v}$$
resonance relation
 $cf. \rho \text{ parameter in}$
 $M^{2}_{Z_{H}} \simeq 4m_{X}^{2} \frac{g_{B-L}^{2}}{g_{X}^{2} R_{v}} (1+R_{v})$

NEUTRINO MASS

• The story of neutrino mass generation is same as before

ZL, H COUPLING TO FERMIONS

- At tree level:
 - ZL-f-fbar coupling $\propto g_{B-L} \sin \theta \sim g_{B-L} \theta$
 - Z_H-f-fbar coupling $\propto g_{B-L} \cos\theta \sim g_{B-L}$
- Although Z_H is much heavier than Z_L, it turns out that the coupling between the former and SM fermions makes its contributions to the e⁺e⁻ → Z_{L,H} → ℓ⁺ℓ⁻ and pp → Z_{L,H} → ℓ
 +ℓ-X more dominant.

CONSTRAINTS ON GAUGE COUPLING

- Take $g_X = g_{B-L}$ for definiteness and simplicity
- $e^+e^- \rightarrow Z_{L,H} \rightarrow \ell^+\ell^- @ LEP-II: \sigma + A_{FB}$
- pp $\rightarrow Z_{L,H} \rightarrow \ell + \ell X @ LHC 7 TeV (4.5/fb): \sigma$

RELIC DENSITY OF DM

- Pair annihilation is dominated by Z_L due to resonance and lighter mass than Z_H
- Employ approximate Boltzmann equation solution

RELIC DENSITY CONSTRAINT

• Employ 90%-CL range:

• $m_X > 420$ (220) GeV is allowed for $R_v = 10^{-2}$ (10⁻³)

• O(1) gauge coupling constant is required

A WORD ABOUT VS

• A linear relation between DM mass and the S VEV:

$$m_X = g_X v_\Phi = g_X \sqrt{R_v v_S}$$

 v_S should be above ~5–10 TeV, preferring TeV-scale type-I seesaw

DM-NUCLEON SCATTERING

 Scattering cross section for direct detection in nonrelativistic limit

• Still dominated by Z_L due to lighter mass

DIRECT SEARCH CONSTRAINT

- A significant portion of parameter space at high m_X is allowed by direct search
- Smaller R_v is not helpful as it is ruled out by gauge coupling constraints

SUMMARY

- Z₂ symmetry for stabilizing DM candidates (darkons) emerges naturally as remnant of extra gauge groups, rather than *ad hoc*.
- Models easily accommodate SM-like Higgs, but also leave ample room for non-SM-like Higgs (including invisible Higgs decays).
- Incorporated minimal mechanism for (1) stabilizing DM using DGS and (2) generating neutrino mass through breaking of same group.
- Z' as well as Higgs contribute to DM interactions with SM particles.
 consider Z' dominant in DM relic density determination
 - coannihilation is taken into account in U(1) model
 - matural resonance effect in non-Abelian extensions
- Checked constraints of new gauge coupling, DM relic density, and DM direct detection. WIMP of O(100) GeV is favored.
- Computed invisible Higgs decays.
- Comments on collider pheno are given in paper.

SUMMARY

- We had a very successful workshop.
- I learned physics and ski.
- Many thanks to Eung Jin and organizing staff!

THANK YOU AND LOOK FORWARD TO SEEING YOU ALL IN ''T-HIGH I''