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EVIDENCE OF BSM

» Celestial evidence of DM (familiar ones):
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EVIDENCE OF BSM

« Celestial / terrestrial evidence: neutrino mass
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ONE ’PROPERTY IN COMMON

- Both DM and neutrinos are difficult to see (catch in
detectors)



WHAT IS ESSENTIALY?

What 1s essential is invisible to the eye.




INTRODUCING THE ELEPHANT

- When there’s an elephant in the room, introduce them.
--- Randy Pausch, The Last Lecture
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EXAMINING CLEPHANT BY THE BLIND




EVERYONE HAS His OWN STORY

scalar
 Dark matteris | = ileile or a combination of them.

vectorial



OURrR -ST'ORY

» Model with Z> symmetry emerged from U(1)
w scalar DM

» Model with Z> symmetry emerged from SU(2)
- non-Abelian vector DM

- Summary



MODEL |



HuMeLE CRITERIA OF MODEL

- Stabilized DM candidate

- Simplest gauge group extension
» Minimal new particle contents

- Generating neutrino mass



THE MODEL

- Extend SM gauge group by extra U(1)¢
- Add 3 RH neutrinos and 2 complex scalar fields, S and D

- Anomaly cancellation demands U(1); nothing but U(1)s-L
b (Ggp X U(‘I)B_L

» Quantum number assignment:

Jom Vg H S D
SU(2), U(1)y 9l 1,0 2,1/2 | 1,0 1,0
U(1)¢ [Z2] Crl=l | 1= | O[] | 2[+] | T[]

Table 1: Charge assignments of the fermions and scalars in the model. fq,

(ggM) denotes SM fermions (their assignments) and H the usual complex dou-
blet. For quarks and leptons, (y =1/3 and —1, respectively.



DISCRETE GAUGE SYMMETRY

Krauss, Wilczek 1989

 New scalar Lagrangian: Nakayama, Takahashi, Yanagida 201 |
_ i i
L= (@"D)'D, D+ (D"S)D,S —V

zero VEV to maintain /£»
and DM longevity

induces nonzero (S)
and breaks U(|)g-L

V =pp|DI? — pg|S|* + pps(D?ST + h.c.)

+2Xps| DIPISI? + 2(Apu|DI* + Awsl|S|?) H H
+ Ap|D|* + AglS|* 4 (M HTH — ;F{)HTH

all N's > 0 for
vacuum stabilifty

essential to the breaking| | S-H mixing, assumed
U(l)s-L = £ to be negligible




« Scalar VEV's:

1 0 ) Vg
H) = — S) = S
(H) = 7 ( (S) 3
- Mass eigenstates of D = (Dr + i Di)/V2 (both dubbed

darkons):

2 2 2 2
MDD = HD T Apuy Vg + Apgvs £ V2pupgvg >0

- Consider nearly-degenerate case (HUps > 0 and ~ 0)
- D as WIMP DM (~ simplest darkon) Silveria, Zee 1985
w coannihilation with Dr possible




NEUTRINOC MASS

 Neutrino sector contains both Dirac and Majorana terms:

iNg Ve H oLy, — %Aﬁcz Ur (1R)°ST + hee.

_ 1 1 N/ ~ [ti-TeV
Mp =L vy, M, =L Nyg ~ e

- Majorana neutrino mass is generated through usual
Type-l seesaw. :




A WORD ABOUT HiggsSES

- Physical h and s are almost purely from H and S,
respectively, under our assumption of negligible mixing

» Mass eigenvalues

2 2
My ¢ >~ 2 Ay sV g

* My, fixed at 125 GeV

* Ms is multi-TeV in view of RH neutrino’s Majorana mass,
provided all N’s are of O(1)



CONSTRAINTS ON GAUGE COoUPLING

- Z’mass induced purely by S: mz = 2g;vs
w no Z-Z' mixing at tree level

»ete- > 7' - - @ LEP-Il: 0 + Ars
*pp > Z - H-X @ LHC 7 TeV (4.5/fb): o
upper limits @ 90% CL
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ReLIC PENSITY OF PM

- Assume mass degeneracy between darkons
- Employ approximate Boltzmann equation solution

1.07 x 10° Oy Vye)
() h2 — _/ eff “rel/ /
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| |
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ReLIC PENSITY CONSTRAINT

» Employ 90%-CL range:
0.092 < Qphs < 0.118 WMAP 201 |

* Reference value mz = 300 GeV as an example:

0500 e ‘,.-—"‘"‘“‘ j
‘ gauge coupling upper limits
0.100 - i —i S
0.050 -
ol
= ﬁ
0.010 -

resonance demanded
(mz = 2mp), due to
| small gauge coupling
OO 100 150 200 +300=a00 —
mp (GeV)
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PM-NUCLEON SCATTERING

» Scattering cross section for direct detection

N N
resonance relation, \./

mz = 2mp, Is assumed h* + 7z
| I
(rather strong assumption) Ny P

| — — - ~ -

D ‘ D D ‘ D

N N
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)\DHQ_NNhMDNUH - 9¢HDN

O ~
PN mim4, my o m‘é,\
Higgs-nucleon effective coupling Upn =
0.001l < gnnn < 0.0032 mp + m N

Cheng, CWC 2012



PIrRECT SEARCH CONSTRAINT
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- darker region: purely Higgs; lighter region: Higgs + Z’
* Only some space below 50 GeV ruled out by data

» Higgs dominant in small mp region

- /’ dominant for mp =z mn, also allowed by data

» Wait for XENONA1T to probe



INVISBLE Higgs PECAYS

* Invisible h—DD decays possible if mp < mn/2
» hDD coupling o< ApH VH
* BR(h—inv) = 0.2 from LHC data Giardino, Kannike, Raidal, Strumia 2012
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- BR(h—DD) large even if h subdominant in DD annihilation
w hDD coupling more constrained for mp < mn/2
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RESONANCE RELATION

» Both direct DM search and Higgs data favor Z’-dominated
DM annihilation.

» All assumptions in previous model are acceptable except
for one, namely, resonance mass relation between
darkons and Z’.

* Is it possible to obtain resonance mass relation more
naturally, while keeping gauge structure and
representations as simple as possible?



IMPROVED MODEL

- Extend SM gauge group by SU(2)x x U(1)s-L

- Add 3 RH neutrinos, 1 5-plet scalar fields (®s), 1 singlet
scalar (S), 3 SU(2) gauge bosons (X, X*y, Cu), and 1 U(1)
gauge boson (Ey)

- Anomaly cancellation satisfied
m Gsm x SU(2)x x U(1)s-L
L— Z.X: even/odd Tax component

» Quantum number assignment:
|| fem vp | H| S | ¢ | & | ¢ |0-1|02| X | XT|Cs | E

SU(2)x [U(1)p—r] [[1[B—L]|1[=1]|1[0] {1[2]|5[2]|5[2]{5[2]|5[2] |5[2][3[0]|3[0] | 3[0] [ 1[0]
Tsx 0 o fofo|2]1]0|-1|-2[1]-1]0]0
Zy + + |+ |+ ]|+ -+ -1+ -|-]+]+

TABLE I: The charge assignments under SU(2), xU(1)z_,; and Z3* parity of the fermions, scalars and
new gauge bosons in the model, with fq,, referring to SM fermions, X = (C; —iC3)/ V2, and T3x denoting

the eigenvalue of the third generator of SU(2)x.



STRUCTURE OF MoOoDEL

fermions charged

under U(1)g-L

singlet under SU(2)x

gauge boson mixing

s charged under both

through Z, and 71

singlet under Gsm




SYMMETRY BREAKING

. VEV's Vg > Vg > 0 /1;61)\
_ 1[0 _ s _ L
= () =15 @)= 0

\ 0

U(l)B_L!' Zgk 1

- Since (®s) # 0 occurs via its Tax = 2 component, Z>X
symmetry emerges naturally as subgroup of SU(2)x
w stabilizing X and Xt as DM candidates

m take ZoX-odd scalars to be more massive

« ZoB-L is remnant of U(1)s_L after <S) # 0 as before, but
does not play any role in stabilizing X



New GAUGE BOSONS

- X and XT:
1 , 1 .
X:ﬁ(CI_ZCZ) . XT:E(C& —I—’LCQ)
- W boson-like, but electrically neutral
* sub-TeV mass m_2X — g§< U<21>
» ZL and Zn:
Zr\ [ cosf sinf)\ (Cs .
Zg) \—sinf cosb E R, = vq) <1
S
9|~ IX R ~ R
Vg > vg > 0 IB-L resonance relation
» mZL ~ 4mX(1 — R,) — cf p parameter in
CIX = 4dB— L SM

QB L




NEUTRINOC MASS

» The story of neutrino mass generation is same as before



Z 1 COUPLING TO FERMIONS

* At tree level:

- Z -f-fbar coupling < gs_L sin@ ~gs-L O

- Zn-f-fbar coupling o< gs-L c0SO ~ gB-L

» Although Zx is much heavier than Z,, it turns out that the

coupling between the former and SM fermions makes its

contributions to the ete- = Z y = +l-andpp = ZLn — £
+{-X more dominant.



CONSTRAINTS ON GAUGE COoUPLING

- Take gx = gp—_r for definiteness and simplicity

cete- & ZLy — U+- @ LEP-Il: 0 + Ars

*pp = ZLH > H-X @ LHC 7 TeV (4.5/fb): o

violating perturbativity =~ PP’ imits @ 90% CL
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ReLIC PENSITY OF PM

» Pair annihilation is dominated by Z, due to resonance and
lighter mass than ZH

- Employ approximate Boltzmann equation solution

9 00
O, h2 = 1.07 x 10 . o <Ueﬂ—‘ Urel>
| V9x mp; J GeV o 72

Hubble constant in ‘ 1/
units of 100/km/s/Mpc @ ¢ = In {0.038 et Mx Mpy (TegVrel) (922 ¢) ]

=3 for_spin—l X H of_relativistic
dof’s below
freeze-out temp T

X" f

ZLH
0 X g5 gn_5 cos®Osin 0 ~ g5 g5_ 1 0°

X f larger gauge couplings demanded

I — T




ReLIC PENSITY CONSTRAINT

» Employ 90%-CL range:
0.1159 < QDh(Q) < 0.1215 Planck 2013
violating perturbativity

gx

relic density constraint
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* mx > 420 (220) GeV is allowed for Ry=10-2 (10-3)
« O(1) gauge coupling constant is required




A WORD ABOUT Ve

« A linear relation between DM mass and the S VEV:
mx = gxve = gx\ yvs

15000

10000 |-

vs(GeV)

5000 +

200 300 | 500 700 1000
mx (GeV)

* Vs should be above ~5-10 TeV, preferring TeV-scale type-I
seesaw



PM-NUCLEON SCATTERING

» Scattering cross section for direct detection in non-
relativistic limit

N N
m 5 1M
_ xMpy
ZLH UxN =
Mx T My
X X
2 2 20 win2g ;2 4 p2 2
Lol _ IxIp-rO° Osin0usn  gx Ry nxn
AN Wm%L 16m m5

» Still dominated by Z. due to lighter mass



PIrRECT SEARCH CONSTRAINT
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* A significant portion of parameter space at high mx is
allowed by direct search

- Smaller Ry is not helpful as it is ruled out by gauge
coupling constraints




-SMMMAR,Y

- Z> symmetry for stabilizing DM candidates (darkons) emerges
naturally as remnant of extra gauge groups, rather than ad hoc.

« Models easily accommodate SM-like Higgs, but also leave ample
room for non-SM-like Higgs (including invisible Higgs decays).

* Incorporated minimal mechanism for (1) stabilizing DM using DGS
and (2) generating neutrino mass through breaking of same group.

- Z’ as well as Higgs contribute to DM interactions with SM patrticles.
m consider Z’ dominant in DM relic density determination

w coannihilation is taken into account in U(1) model

w natural resonance effect in non-Abelian extensions

- Checked constraints of new gauge coupling, DM relic density, and DM
direct detection. WIMP of O(100) GeV is favored.

- Computed invisible Higgs decays.
- Comments on collider pheno are given in paper.



SUMMARY

* We had a very successful workshop.
- | learned physics and ski.
- Many thanks to Eung Jin and organizing staff!
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THANKYOU AND
LOOK FORWARD TO
-ING YOU ALL IN“T-HIGH 1™




