Extracting IR/UV divergences in multiloop diagram by series expansion in ε

Yeo Woong Yoon (KIAS) at KIAS pheno, 2013. 11. 11

Outline

Introduction

- 1. UV, IR divergences
- 2. Parameterization for multiloop diagram
- 3. Sector decomposition
- Separating UV/IR divergences
- Example
 - 1. 1loop
 - 2. 2loop
- Conclusion

UV, IR divergences

Let us consider the process $\gamma^{\uparrow} \rightarrow q \overline{q}$ q $k+p_{1}$ $k-p_{2}$ Virtual correction UV $\int \frac{d^d k}{(2\pi)^d} \frac{1}{k^4} \sim \frac{1}{\epsilon_{\mu\nu}}$ $= \int \frac{d^{d}k}{(2\pi)^{d}} \frac{(k + p_{1}')(k - p_{2}')}{k^{2}(k^{2} + 2k \cdot p_{1})(k^{2} - 2k \cdot p_{2})} \int \frac{IR}{k \sim 0} \int \frac{d^{d}k}{(2\pi)^{d}} \frac{1}{k^{2}k \cdot p_{1}k \cdot p_{2}} \sim \frac{1}{\epsilon_{in}}$ $\sim \int \frac{d^{a} k}{(2\pi)^{d}} \frac{1}{k^{2} (\not k + \not p_{1}) (\not k - \not p_{2})}$ $\int \frac{d^d k}{(2\pi)^d} \frac{1}{k^2(k^2+2k\cdot p_1)} \sim \frac{1}{\epsilon_{\rm IR}}$

→ Collinear divergence

UV, IR divergences Let us consider the process $\gamma^* \rightarrow q \overline{q}$ Real Emission

 $p_3 \sim 0$

 $\sim \int d\Pi_3 \frac{1}{2p_1}$

 $\underbrace{\mathsf{IR}}_{p_3 \sim p_1} \sim \frac{1}{\epsilon_{\mathsf{IR}}} \rightarrow \text{Collinear divergence}$ All the UV divs. are canceled by Renormalization. All the IR divs. are canceled between Virtual correction and Real emission. \rightarrow KLN theorem.

 $\frac{\mathsf{IR}}{\rho_{0}} \sim \frac{1}{\epsilon_{\mathsf{IR}}} \rightarrow \text{Soft divergence}$

UV, IR divergences

Catani-Seymour Method at NLO Catani, Seymour, NPB (1997)

 \rightarrow Systematic method for canceling IR between virtual correction and real emission diagrams. Method for more than one loop is challenging.

Other works on UV/IR divergences:

Tausk, PLB, (1999) Czakon, CPC, (2005)

→ Using MB representation Sector Decomposition Heinrich, 0803.4177

• Feynman Parameterization

$$F_{\Gamma}(\boldsymbol{q}_{1},\boldsymbol{q}_{2},\cdots,\boldsymbol{q}_{n};\boldsymbol{d}) = \int \boldsymbol{d}^{d}\boldsymbol{k}_{1}\cdots\boldsymbol{d}^{d}\boldsymbol{k}_{h}$$
$$\times \int_{0}^{\infty}\boldsymbol{d}\xi_{1}\cdots\int_{0}^{\infty}\boldsymbol{d}\xi_{L}\delta(\sum\xi_{l}-1)\frac{\prod_{l}\xi_{l}^{a_{l}-1}}{(\sum\mathcal{P}_{l}\xi_{l})^{a}}$$

• alpha Parameterization

$$F(q_1,q_2,\cdots,q_n;d) = \frac{(-1)^a}{\prod_j \Gamma(a_j)} \int_0^\infty d\alpha_1 \cdots \int_0^\infty d\alpha_L \delta(\sum \alpha_j - 1) \frac{\mathcal{U}^{a-(h+1)d/2} \prod_j \alpha_j^{a_j-1}}{(-\mathcal{V} + \mathcal{U} \sum m_j^2 \alpha_j)^{a-hd/2}}$$

$$\mathcal{U} = \sum_{\tau \in \mathcal{T}^1} \prod_{l \notin \mathcal{T}} \alpha_l \qquad \Rightarrow \text{Polynomial of } \alpha \text{s of order } h.$$

 $\mathcal{V} = \sum_{T \in \mathcal{T}^2} \prod_{l \notin T} \alpha_l (q^T)^2 \quad \Rightarrow \text{Polynomial of } \alpha \text{s of order } h+1.$

For example

 $F(s,t;\varepsilon) = \int_0^\infty d\alpha_1 \cdots \int_0^\infty d\alpha_4 \delta(\sum \alpha_j - 1) \frac{(\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 - 1)^{2\varepsilon}}{(-t\alpha_1\alpha_3 - s\alpha_2\alpha_4)^{2+\varepsilon}}$

Where are UV/IR divergences?

 \rightarrow Looking for denominator to be zero.

Divergences arise when denominator becomes zero as same number of alphas with integer power of denominator have boundary values.

For example-1

$$\int_{0}^{1} d\alpha \frac{1}{(\alpha + i0)^{1-\varepsilon}} = \frac{1}{\varepsilon}$$

$$\int_{0}^{1} d\alpha \frac{1}{(\alpha - 1/2 + i0)^{1-\varepsilon}} = \log\left(\frac{1}{2}\right) - \log\left(-\frac{1}{2} + i0\right) = -\pi i$$

 \rightarrow zero denominator with non-boundary values of alphas generate imaginary values.

For example-2

$$\int_{0}^{1} d\alpha_{1} d\alpha_{2} \frac{1}{(\alpha_{1} + \alpha_{2})^{1-\varepsilon}} = \int_{0}^{1} d\alpha_{1} \ln\left(\frac{1 + \alpha_{1}}{\alpha_{1}}\right) + \mathcal{O}(\varepsilon) = 2\ln 2 + \mathcal{O}(\varepsilon)$$

 \rightarrow No div. where the number of alphas with boundary values that make denominator zero is greater than integer power of denominator.

$$\int_{0}^{1} d\alpha_{1} d\alpha_{2} \frac{1}{(\alpha_{1}+\alpha_{2})^{2-\varepsilon}} = \int_{0}^{1} d\alpha_{1} \frac{\alpha_{1}^{\varepsilon-1}-(\alpha_{1}+1)^{\varepsilon-1}}{1-\varepsilon} = \frac{1}{\varepsilon}+1-\ln 2+\mathcal{O}(\varepsilon)$$

Sector Decomposition

Heinrich, 0803.4177

 \rightarrow Perform this decomposition for the multi-dimensional hyper-surface of alphas.

→ Algorithmic. <u>Suitable for numeric calculation.</u>

We first apply 'Cheng-Wu' theorem for all alphas except 1.

$$F(q_1, q_2, \dots, q_n; d) = \frac{(-1)^a}{\prod_j \Gamma(a_j)} \int_0^\infty d\alpha_1 \dots \int_0^\infty d\alpha_l \delta(\sum \alpha_j - 1) \frac{\mathcal{U}^{a-(h+1)d/2} \prod_j \alpha_j^{a_j-1}}{-\mathcal{V} + \mathcal{U} \sum m_j^2 \alpha_j)^{a-hd/2}}$$

We can replace $\delta(\sum \alpha_j - 1)$ with $\delta(\sum_{\nu \in S} \alpha_\nu - 1)$ for any subset S of alpha variables set.
Our choice is $\delta(\sum \alpha_j - 1) \to \delta(\alpha_l - 1)$

Namely, we choose one alpha and make it 1, then integrate from zero to infinity for all the other alphas.

Investigate denominator to find divergences

$$\frac{\Box}{\mathcal{U}^{2-\varepsilon}(-\mathcal{V}+\mathcal{U}\sum m_{j}^{2}\alpha_{j})^{3-\varepsilon}}$$

Construct a set *S* that consists of set of variables that cause divergences

1. For example α_1

$$S_{1} = \{\alpha_{1}, \alpha_{2}\}$$
$$S_{2} = \{\alpha_{1}, \alpha_{3}\}$$
$$S_{3} = \{\alpha_{4}, \alpha_{6}\}$$

$$\begin{array}{c} 2 \\ \alpha_{1} \\ \alpha_{3} \\ \alpha_{5} \\ \alpha_{2} \\ \alpha_{4} \\ \alpha_{6} \\ 1 \\ 3 \end{array}$$

3. Do the variable change, $\alpha_1 \rightarrow \eta_1 \eta_2 \alpha_1$, $\alpha_2 \rightarrow \eta_1 \alpha_2$, $\alpha_3 \rightarrow \eta_2 \alpha_3$, $\alpha_4 \rightarrow \eta_3 \alpha_4$,

$$\alpha_{\rm 5} \,{\rightarrow}\, \eta_{\rm 3} \alpha_{\rm 5}$$

2. Multiply by $1 = \int_0^\infty d\eta_1 d\eta_2 d\eta_3 \delta(\eta_1 - \alpha_2) \delta(\eta_2 - \alpha_3) \delta(\eta_3 - \alpha_4 - \alpha_6)$

The IR/UV div. are separated as

$$\int_{0}^{\infty} d\eta_{1} d\eta_{2} d\eta_{3} \eta_{1}^{-1+a_{1}\varepsilon} \eta_{2}^{-1+a_{2}\varepsilon} \eta_{3}^{-1+a_{3}\varepsilon} \delta(\alpha_{2}-1) \delta(\alpha_{3}-1) \delta(\alpha_{4}+\alpha_{6}-1) F(\eta_{i},\alpha_{i},\varepsilon)$$
Div. part
Div. free, safely expanded in ε
After variable change : $\eta_{j} \rightarrow \frac{(1-\xi_{j})}{\xi_{i}}, \int_{0}^{\infty} d\eta_{j} \rightarrow \int_{0}^{1} \frac{d\xi_{j}}{\xi_{i}^{2}}$

we use following expansion formula for div. part.

$$\xi^{-1+a\varepsilon} = \frac{\delta(\xi)}{a\varepsilon} + \sum_{k} \frac{(a\varepsilon)^{k}}{k!} \left[\frac{\ln^{k} \xi}{\xi} \right]_{+}$$
$$\left(\xi(1-\xi)\right)^{-1+a\varepsilon} = \frac{\Gamma(a\varepsilon)^{2}}{2\Gamma(2a\varepsilon)} \left(\delta(\xi) + \delta(1-\xi)\right) + \sum_{k} \frac{(a\varepsilon)^{k}}{k!} \left[\frac{\ln^{k} \xi(1-\xi)}{\xi(1-\xi)} \right]$$

Summary

working in progress

GHPL : Generalized Harmonic Poly-Logarithm func.

$$G(p_1, \cdots, p_m; x) \equiv \int_0^x \frac{dy_1}{y_1 - p_1} \int_0^{y_1} \frac{dy_2}{y_2 - p_2} \cdots \int_0^{y_{m-1}} \frac{dy_m}{y_m - p_m}$$

Example

Massless one loop box diagram

$$F(s,t;\varepsilon) = \int_0^\infty d\alpha_1 \cdots \int_0^\infty d\alpha_4 \delta(\sum \alpha_j - 1) \frac{(\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 - 1)^{2\varepsilon}}{(-t\alpha_1\alpha_3 - s\alpha_2\alpha_4)^{2+\varepsilon}}$$

 $\mathcal{U} = \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4$

 $\mathcal{V} = t \,\alpha_1 \alpha_3 + s \,\alpha_2 \alpha_4$

After IR separation

$$F(s,t;\varepsilon) = \frac{(-t)^{-\varepsilon}}{st} \Gamma(2+\varepsilon) \frac{\Gamma(-\varepsilon)^2}{\Gamma(-2\varepsilon)} \int_0^1 \xi_1 \xi_2 (\xi_2 \overline{\xi}_2)^{-1-\varepsilon} (x\xi_1 \xi_2 + \overline{\xi}_2 \overline{\xi}_2)^{\varepsilon}$$

The result is

$$F(s,t;\varepsilon) = \frac{1}{st} \left(\frac{4}{\varepsilon^2} - \frac{2}{\varepsilon} \left(\ln(-s) + \ln(-t) \right) + 2\ln(-s)\ln(-t) - \frac{4\pi^2}{3} \right)$$

Example

$$\mathcal{U} = (\alpha_3 + \alpha_5)(\alpha_4 + \alpha_6) + (\alpha_1 + \alpha_2)(\alpha_3 + \alpha_5 + \alpha_4 + \alpha_6)$$
$$\mathcal{V} = q^2(\alpha_1\alpha_2(\alpha_3 + \alpha_4 + \alpha_5 + \alpha_6) + \alpha_1\alpha_4\alpha_5 + \alpha_2\alpha_3\alpha_6)$$

18

After IR separation

$$F(q^{2};\varepsilon) = \frac{\Gamma(2+2\varepsilon)}{(-q^{2})^{2+2\varepsilon}} \int_{0}^{1} \xi_{1}\xi_{2}\xi_{3}\xi_{4}\xi_{5} \ (\xi_{1}\overline{\xi_{1}}\xi_{2}\overline{\xi_{2}})^{-1-2\varepsilon} (\xi_{3}\overline{\xi_{3}})^{-1-\varepsilon}\xi_{4}^{-1-2\varepsilon}\overline{\xi_{4}}^{1+\varepsilon}\xi_{5}^{-\varepsilon}$$
$$\times \left(\xi_{4}\overline{\xi_{5}}+\overline{\xi_{4}}\right)^{-2-2\varepsilon} (\xi_{5}\overline{\xi_{4}}+\xi_{1}\xi_{2}\xi_{4}\xi_{5}+\overline{\xi_{1}}\overline{\xi_{2}}\xi_{4}\overline{\xi_{5}})^{3\varepsilon}$$
$$= \frac{1}{(-q^{2})^{2+2\varepsilon}} \left(\frac{1}{\varepsilon^{4}}-\frac{\pi^{2}}{\varepsilon^{2}}-\frac{83\zeta(3)}{3\varepsilon}-\frac{59\pi^{4}}{120}\right)$$

Example

Massless two loop diagram

$$\mathcal{U} = \alpha_{1234}\alpha_5 + \alpha_{12}\alpha_{34}$$
$$\mathcal{V} = \boldsymbol{q}^2 \left(\alpha_5 \alpha_{13} \alpha_{24} + \alpha_1 \alpha_3 \alpha_{24} + \alpha_2 \alpha_4 \alpha_{13} \right)$$

19

There is no div. term.

$$F(s,t;\varepsilon) = \frac{1}{q^2} \int_0^1 d\xi_1 \cdots \int_0^1 d\xi_4 \frac{1}{(\overline{\xi}_2 \xi_2 \xi_3 + \xi_1 (1 - \overline{\xi}_2 \xi_3 (1 + \xi_2 - 2\xi_4) - \xi_4 - \overline{\xi}_2^2 \xi_3^2 \xi_4))}$$

$$F(s,t;\varepsilon) = \frac{6}{q^2} \zeta(3)$$

Conclusion

- We propose a new method of extracting IR/UV divergences by series expansion in ε.
- This method is algorithmic and quite improves the access to analytic calculation.
- We are working on generalized procedure for analytic calculation for the remaining integration in terms of GHPLs and making Mathematica code for that.
- This method will be useful for higher order correction in the future LHC era.