Probing origins of neutrino masses and baryon asymmetry

Takehiko Asaka (Niigata Univ.)

In collaboration with Shintaro Eijima (EPFL, Switzerland) Atsushi Watanabe (MPIK, Germany)

References: JHEP1303 (2013) 125 arXiv:1308.3550 (to appear in PTEP)

@KIAS (2013/11/15)

Introduction

- Neutrino mass scales
 - Atmospheric: $\Delta m_{\rm atm}^2 \simeq 2.4 \times 10^{-3} {\rm eV}^2$
 - Solar : $\Delta m_{sol}^2 \simeq 7.5 \times 10^{-5} \text{eV}^2$
 - \Rightarrow Need for physics beyond the SM !
- Important questions:
 - "What is the origin of neutrino masses?"
 - "How do we test it experimentally?"

Extension by RH neutrinos v_R

$$\delta L = i \overline{v_R} \partial_\mu \gamma^\mu v_R - F \overline{L} v_R \Phi - \frac{M_M}{2} \overline{v_R} v_R^c + \text{h.c.}$$

Minkowski '77 Yanagida '79 Gell-Mann, Ramond, Slansky '79 Glashow '79

• Seesaw mechanism $(M_D = F\langle \Phi \rangle \ll M_M)$

$$-L = \frac{1}{2} (\overline{v_L}, \overline{v_R^c}) \begin{pmatrix} 0 & M_D \\ M_D^T & M_M \end{pmatrix} \begin{pmatrix} v_L^c \\ v_R \end{pmatrix} + h.c = \frac{1}{2} (\overline{v}, \overline{N^c}) \begin{pmatrix} M_v & 0 \\ 0 & M_M \end{pmatrix} \begin{pmatrix} v^c \\ N \end{pmatrix} + h.c. \qquad M_v = -M_D^T \frac{1}{M_M} M_D \\ U^T M_v U = diag(m_1, m_2, m_3)$$

D Light, active neutrinos v

- \rightarrow explain neutrino oscillations
- **B** Heavy neutrinos N ($N \simeq v_R$)
 - Mass M_M
 - Mixing $\Theta = M_D / M_M$

mixing in CC current $v_L = U v + \Theta N$

Scale of Majorana mass

Scale of Majorana mass

• The simplest case: one pair of v_L and v_R

Scale of Majorana mass

In this talk

Consider the minimal case with two RH neutrinos

- Lighter than charged kaon $M_{2,3} < m_K$ → Test by Kaon decays $(K^+ \rightarrow \ell^+ N_I)$ is possible
- Current status of (RH) heavy neutrinos
 Region of successful baryogenesis
 - Constraints from direct search and cosmology
- Implication to $0\nu 2\beta$ decay
- Search for (RH) heavy neutrinos at T2K

When adding one more DM RH neutrino N_1 ,

the results can be applied to the ν MSM !!

TA, Blanchet, Shappshnikov ('05), TA, Shaposhnikov ('05) 8

Current status of heavy neutrinos

Oscillation of heavy neutrinos can be a source of BAU

Akhmedov, Rubakov, Smirnov ('98) / TA, Shaposhnikov ('05)

Shaposhnikov ('08), Canetti, Shaposhnikov ('10) TA, Ishida ('10), Canetti, Drewes, Shaposhnikov ('12), TA, Eijima, Ishida ('12) Canetti, Drewes, Shaposhnikov ('12), Canetti, Drewes, Frossard, Shaposhnikov ('12)

D CPV in oscillation and production generates asymmetries

- **D** Asymmetries are separated into LH and RH leptons
- **D** Asymmetry in LH leptons is converted into BAU

Yield of BAU depends on Yukawa couplings $F_{\alpha I}$ and masses

Especially, CP violating parameters and mass difference

 $T_{\rm osc} \sim (M_0 \ M_N \ \Delta M)^{1/3}$

Region accounting for $\frac{n_B}{s} = (8.55-9.00) \times 10^{-11}$

106 IΗ 1000 NH $\Delta M_M[eV]$ 1 0.001 10^{-6} 0.01 0.1 0.001 1 10 M[GeV]

Canetti, Shaposhnikov '10

15/11/2013

Region accounting for $\frac{n_B}{s} = (8.55-9.00) \times 10^{-11}$

Region accounting for $\frac{n_B}{s} = (8.55-9.00) \times 10^{-11}$

(1) quasi-degenerate(2) masses are

 $M_N > 2.1 \text{ MeV (NH)}$ $M_N > 0.7 \text{ MeV (IH)}$

Such light RH neutrinos can be directly tested by experiments! TA, Eijima '13

Takehiko Asaka (Niigata Univ.)

Direct search experiment

BBN constraint on lifetime

Long-lived N_{2,3} may spoil the success of BBN
 Speed up the expansion of the universe

•
$$\rho_{\text{tot}} = \rho_{\text{MSM}} + \rho_{N_{2,3}} \Rightarrow H^2 = \frac{\rho_{\text{tot}}}{3 M_P^2}$$

• p-n conv. decouples earlier \Rightarrow overproduction of ${}^{4}\text{He}$

 $n + \nu \leftrightarrow p + e^-, \dots$

Distortion of spectrum of active neutrinos

•
$$N_{2,3} \rightarrow \nu \overline{\nu} \nu, e^+ e^- \nu, \dots$$

- Additional neutrinos may not be thermalized
- \Rightarrow Upper bound on lifetime
- Dolgov, Hansen, Rafflet, Semikoz ('00)
 One family case: $\tau_N < 0.1 \sec \text{ for } M_N > m_{\pi}$

Constraints on light RH neutrinos

TA, Eijima '13

15

8

Implication to $0\nu 2\beta$ decay

Takehiko Asaka (Niigata Univ.)

Constraints on light RH neutrinos

TA, Eijima '13

15/11/2013

Takehiko Asaka (Niigata Univ.)

Mixing elements in IH case

Mixing elements of heavy neutrinos $\Theta_{\alpha I}$

We find allowed range of Majorana phase !

Majorana phase in IH case

Majorana phase is restricted for $M_N < 350$ *MeV!*

$0\nu 2\beta$ decays in IH

Effective neutrino mass from light and heavy neutrinos $m_{\text{eff}} = m_i U_{ei}^2 + f_\beta(M_I) M_I \Theta_{eI}^2 = [1 - f_\beta(M_N)] m_{\text{eff}}^{\nu}$ TA, Eijima, Ishida ('11)

 $m_{\text{eff}}^{\nu} = \cos^2 \theta_{13} (m_1^2 \cos^4 \theta_{12} + m_2^2 \sin^4 \theta_{12} + 2m_1 m_2 \cos^2 \theta_{12} \sin^2 \theta_{12} \cos 2\eta)^{1/2}$

- Heavy neutrinos give negative contribution to m_{eff}
- Constraint on η restricts the predicted range of $m_{\rm eff}$

§

Search for heavy neutrinos at T2K

TA, Eijima, Watanabe [JHEP1303 (2013) 125]

Takehiko Asaka (Niigata Univ.)

Constraints on light RH neutrinos

TA, Eijima '13

Search for heavy neutrinos at T2K

Search for heavy neutrinos at T2K

Production of NDetection of N $K^+ \rightarrow \ell^+ + N$ $N \rightarrow \ell^- + \pi^+$ $(\ell^- = e^-, \mu^-)$

- **D** Estimate flux of *N* at ND280
- Count # of signal decay inside ND280
- Derive upper bounds on mixing angles

Sensitivity: PS191 vs T2K

T2K at 10^{21} POT has a better sensitivity than PS191 (0.86 × 10^{19} POT) !

Signal vs Background

• Signal events: $N \rightarrow \ell^- + \pi^+$

■ BG events: $\nu_{\mu} + n \rightarrow \mu^{-} + \pi^{+} + n \; (\text{CC-}n\pi^{+})$ $\nu_{\mu} + {}^{16} \; 0 \rightarrow \mu^{-} + \pi^{+} + {}^{16} \; 0 \; (\text{CC-coherent}\pi^{+})$

To reduce BG,

• Use the invariant mass distribution of ℓ^- and π^+ since it has a peak at M_N for signal decay

 Use the low density part of detector filled with argon gas (9m³) out of 61.25m³

See also the recent proposal to search for heavy neutrinos at the CERN SPS. (Shaposhnikov's talk) arXiv:1310.1762

Summary

- We have considered the model with two right-handed neutrinos which are lighter than charged Kaon.
 - Neutrino masses by seesaw mechanism
 - **D** Baryogenesis via neutrino oscillations
 - **D** Search in Kaon decays
- We have found the possible region for neutrino oscillations and BAU, allowed from search and cosmological constraints.
 - Majorana phase is restricted in IH
 - \rightarrow Distinctive feature in $0\nu 2\beta$ decay
- We have discussed search for such right-handed neutrinos at near detector ND280 of T2K experiment
 - Signal: $N \rightarrow e^- + \pi^+$, $\mu^- + \pi^+$ inside ND280 ■ T2K at 10²¹ POT has a better sensitivity than PS191

Backup

Takehiko Asaka (Niigata Univ.)

Comparison

	PS191 [55, 56]	T2K [61]	MINOS [62]	MiniBooNE [63]	SciBooNE [64]
POT	0.86×10^{19}	10^{21}	10^{21}	10^{21}	10^{21}
$(Distance)^{-2}$	$(128{ m m})^{-2}$	$(280{\rm m})^{-2}$	$(1{\rm km})^{-2}$	$(541{\rm m})^{-2}$	$(100{\rm m})^{-2}$
Volume	$216\mathrm{m}^3$	$88\mathrm{m}^3$	$303\mathrm{m}^3$	$524\mathrm{m}^3$	$15.3\mathrm{m}^3$
Events	1	9.9	2.7	15.8	13.5

Table 1. A comparison between PS191 and recent accelerator experiments. The item "Distance" means the distance between the beam target and the detector for each experiment. The item "Events" shows $POT \times (Distance)^{-2} \times Volume$ in units of PS191. The POTs for the oscillation experiments are assumed to achieve 10^{21} .

T2K 2013/4/12: 6.39x10^20 POT 2013/5/8: 6.63x10^20 POT

GOAL: 7.8x10^21 POT

Neutrino Yukawa couplings for N_{2,3}

$$F = U_{\text{PMNS}} D_{\nu}^{1/2} \Omega D_{N}^{1/2} / \langle \Phi \rangle \quad \text{(in NH)}$$
[Casas, Ibarra '01]

Parameters of active neutrinos

$$D_{\nu}^{1/2} = \text{diag}(\sqrt{m_{1}} = 0, \sqrt{m_{2}}, \sqrt{m_{3}}): \text{ active } \nu \text{ masses}$$

$$U_{\text{PMNS}} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -c_{23}s_{12} - s_{23}c_{12}s_{13}e^{i\delta} & c_{23}c_{12} - s_{23}s_{12}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{23}s_{12} - c_{23}c_{12}s_{13}e^{i\delta} & -s_{23}c_{12} - c_{23}s_{12}s_{13}e^{i\delta} & c_{23}c_{13} \\ s_{23}s_{12} - c_{23}c_{12}s_{13}e^{i\delta} & -s_{23}c_{12} - c_{23}s_{12}s_{13}e^{i\delta} & c_{23}c_{13} \\ \end{pmatrix} \quad \text{Majorana phase } \eta$$

$$D_{N}^{1/2} = \text{diag}(\sqrt{M_{2}}, \sqrt{M_{3}}) : \text{ sterile } \nu \text{ masses}$$

$$D_{N}^{1/2} = \text{diag}(\sqrt{M_{2}}, \sqrt{M_{3}}) : \text{ sterile } \nu \text{ masses}$$

$$\Omega = \begin{pmatrix} 0 & 0 \\ \cos \omega & -\sin \omega \\ \xi \sin \omega & \xi \cos \omega \end{pmatrix} \quad \omega: \text{ complex number}$$

Effective neutrino mass

$m_{\rm eff}$ in the vMSM

[TA, Eijima, Ishida '11]

• $m_{\rm eff}$ in the vMSM is smaller than active v's one

• No significant constraint on Θ_{eI} in the vMSM !