Higgs Portal Vector Dark Matter and its Indirect Signatures

Yong Tang Korea Institute for Advanced Study

The 3rd KIAS Workshop on Particle Physics and Cosmology

In collaboration with Seungwon Baek, P. Ko and Wan-II Park

OUTLINE

- Introduction
 - Evidences for DM, Global Symmetry
- $U_X(1)$ vector dark matter
- Effective Operators
- Phenomenology
 - Relic density, direct detection, indirect signatures,...
- Summary

Evidences for Dark Matter

- Rotation Curves of Galaxies
- Gravitational Lensing
- Large scale structure
- CMB anisotropies

•••••

Some features

- Interaction with standard model particles need to be weak,
- Stable, if it decay, its lifetime must be long, even longer than the age of Universe. Usually associated with global symmetry.
- R-parity in MSSM, new physics models
- Z₂ symmetry $\phi \rightarrow -\phi$

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - \frac{1}{2} m^2 \phi^2 - \lambda \phi^4 - \lambda_{\phi H} \phi^2 H^{\dagger} H + \mathcal{L}_{\rm SM}$$

Global Symmetry

- There are some reasons to expect that global symmetries are not respected by nonperturbative quantum gravity.
- Global charges can be absorbed by black holes which then evaporate.

R.Kallosh, A.Linde, D.Linde and L.Susskind, hep-th/9502069

• There is no global symmetry in string theory, symmetry must be gauged.

T.Banks and N.Seiberg, arXiv:1011.5120

Scalar Dark Matter

• Scalar dark matter with Z_2 symmetry, $\phi \rightarrow -\phi$

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - \frac{1}{2} m^2 \phi^2 - \lambda \phi^4 - \lambda_{\phi H} \phi^2 H^{\dagger} H + \mathcal{L}_{\rm SM}$$

• Z_2 violating terms lead to decay

$$\delta \mathcal{L}_{\text{eff}} = \frac{g}{M_{pl}} \phi \mathcal{O}_{\text{SM}}, \ \mathcal{O}_{\text{SM}} = F_{\mu\nu} F^{\mu\nu}, \ \bar{f}\gamma \cdot Df, \ \bar{f}_L f_R H + h.c, \dots$$

• Lifetime $\Gamma \sim \frac{g^2}{16\pi} \frac{m^3}{M_{pl}^2} \simeq g^2 \times \left(\frac{m}{1 \text{TeV}}\right)^3 \times 10^{-29} \text{GeV}$ $\Rightarrow \tau \sim \frac{1}{g^2} \left(\frac{1 \text{TeV}}{m}\right)^3 \times 10^4 \text{ s}$ $t_0 \sim 10^{18} \text{ s}$

$U(1)_X$ gauge symmetry

Minimal extension, a complex scalar Φ and a gauge boson X_{μ}

$$\mathcal{L} = -\frac{1}{4} X_{\mu\nu} X^{\mu\nu} + (D_{\mu} \Phi)^{\dagger} (D^{\mu} \Phi) - \lambda_{\Phi} \left(\Phi^{\dagger} \Phi - \frac{v_{\Phi}^2}{2} \right)^2 -\lambda_{H\Phi} \left(H^{\dagger} H - \frac{v_{H}^2}{2} \right) \left(\Phi^{\dagger} \Phi - \frac{v_{\Phi}^2}{2} \right) - \lambda_{H} \left(H^{\dagger} H - \frac{v_{H}^2}{2} \right)^2 + \mathcal{L}_{SM}$$

With D_{μ} on Φ is defined as

$$D_{\mu}\Phi = (\partial_{\mu} + ig_X Q_{\Phi} X_{\mu})\Phi,$$

Spontaneous breaking

$$\Phi = \frac{1}{\sqrt{2}} \left(v_{\Phi} + \varphi \right) \tag{7}$$

Mixing with Higgs

Mass Eigenstates

$$\begin{pmatrix} h \\ \varphi \end{pmatrix} = \begin{pmatrix} c_{\alpha} & s_{\alpha} \\ -s_{\alpha} & c_{\alpha} \end{pmatrix} \begin{pmatrix} H_1 \\ H_2 \end{pmatrix}$$

$$\begin{pmatrix} 2\lambda_H v_H^2 & \lambda_{H\Phi} v_H v_\Phi \\ \lambda_{H\Phi} v_H v_\Phi & 2\lambda_\Phi v_\Phi^2 \end{pmatrix} = \begin{pmatrix} m_1^2 c_\alpha^2 + m_2^2 s_\alpha^2 & (m_2^2 - m_1^2) s_\alpha c_\alpha \\ (m_2^2 - m_1^2) s_\alpha c_\alpha & m_1^2 s_\alpha^2 + m_2^2 c_\alpha^2 \end{pmatrix}$$

$$\tan 2\alpha = \frac{2\mathcal{M}_{12}}{\mathcal{M}_{11} - \mathcal{M}_{22}}, \text{ or } \sin 2\alpha = \frac{2\lambda_{H\Phi}v_Hv_\Phi}{m_2^2 - m_1^2}.$$

• Higgs' coupling to SM particle are universally scaled by $\sin \alpha$.

Positron Excess

Leptonphilic, TeV dark Matter

Possible Explanations

- DM annihilation $\langle \sigma v \rangle \simeq 10^{-23} \text{cm}^3/\text{s} \gg 10^{-26} \text{cm}^3/\text{s}$
 - Sommerfeld Enhancement
 - Breit-Wigner resonance
- DM decay, $\tau_{\rm DM}\simeq 10^{26}{\rm s}$

Decaying Dark Matter

High dimensional operators can induce
 DM decay

$$\mathcal{L} = -\frac{g_{\Lambda}^2}{\Lambda^2} \mathcal{O}_6$$

$$\Gamma \sim \frac{g_{\Lambda}^4 M^5}{\Lambda^4}, \ \tau = \frac{\hbar}{\Gamma} \sim 10^{26} \mathrm{s} \Rightarrow \Gamma \sim 6 \times 10^{-51} \mathrm{GeV}$$

$$\Lambda \sim g_{\Lambda} \left(\frac{M^{5}\tau}{\hbar}\right)^{\frac{1}{4}} = g_{\Lambda} \left(\frac{10^{15} \text{GeV}^{5} \times 10^{26} \text{s}}{6.583 \times 10^{-25} \text{GeV s}}\right)^{\frac{1}{4}} \sim 2g_{\Lambda} \times 10^{16} \text{GeV},$$

Effective Operators

Gauge invariant building blocks in dark sector $\Phi^{\dagger}\Phi, \ \Phi^{\dagger}i\overleftrightarrow{D}_{\mu}\Phi, \ X^{\mu\nu}, \ \tilde{X}^{\mu\nu}.$ where

 $\Phi^{\dagger} \overleftrightarrow{D}_{\mu} \Phi = \Phi^{\dagger} D_{\mu} \Phi - \left(D_{\mu} \Phi \right)^{\dagger} \Phi$

then dimension-6 operators are $(\Phi^{\dagger}\Phi)^{3}, (\Phi^{\dagger}\Phi) \Box (\Phi^{\dagger}\Phi), (\Phi^{\dagger}D^{\mu}\Phi)^{\dagger} (\Phi^{\dagger}D^{\mu}\Phi),$ $\Phi^{\dagger}\Phi X_{\mu\nu}X^{\mu\nu}, \Phi^{\dagger}\Phi \tilde{X}_{\mu\nu}X^{\mu\nu},$

Effective Operators

- Building components in the SM $H^{\dagger}H, H^{\dagger}i\overleftrightarrow{D}_{\mu}H, B^{\mu\nu}, \tilde{B}^{\mu\nu}, \bar{L}_{i}R_{j}H, \bar{f}_{i}\gamma^{\mu}f_{j},$ $(\bar{L}_{i}\sigma^{\mu\nu}R_{j})H, H^{\dagger}\tau^{I}HW^{I}_{\mu\nu}, H^{\dagger}\tau^{I}H\tilde{W}^{I}_{\mu\nu},$
- Operators involves both DM sector and SM $(\Phi^{\dagger}\Phi)^{2} H^{\dagger}H, \Phi^{\dagger}\Phi (H^{\dagger}H)^{2}, \Phi^{\dagger}\Phi \Box H^{\dagger}H, (\Phi^{\dagger}i\overleftrightarrow{D}_{\mu}\Phi) (H^{\dagger}i\overleftrightarrow{D}_{\mu}H),$ $\Phi^{\dagger}\Phi (\bar{L}_{i}R_{j}H + h.c), (\Phi^{\dagger}i\overleftrightarrow{D}_{\mu}\Phi) (\bar{L}_{i}\gamma^{\mu}L_{j} + \bar{R}_{i}\gamma^{\mu}R_{j}), (\bar{L}_{i}\sigma^{\mu\nu}R_{j}) HX^{\mu\nu} + h.c,$ $\Phi^{\dagger}\Phi B_{\mu\nu}X^{\mu\nu}, \Phi^{\dagger}\Phi \tilde{B}_{\mu\nu}X^{\mu\nu}, H^{\dagger}H B_{\mu\nu}X^{\mu\nu}, H^{\dagger}H \tilde{B}_{\mu\nu}X^{\mu\nu},$ $H^{\dagger}HX_{\mu\nu}X^{\mu\nu}, H^{\dagger}H \tilde{X}_{\mu\nu}X^{\mu\nu}, H^{\dagger}\tau^{I}HW^{I}_{\mu\nu}X^{\mu\nu}, H^{\dagger}\tau^{I}H \tilde{W}^{I}_{\mu\nu}X^{\mu\nu}.$

DM decay

 After the symmetry breaking, DM can decay induced by these effective operators,

$$\begin{pmatrix} \Phi^{\dagger}i\overleftrightarrow{D}_{\mu}\Phi \end{pmatrix} \begin{pmatrix} H^{\dagger}i\overleftrightarrow{D}^{\mu}H \end{pmatrix} \\ \Rightarrow X^{\mu} \to \varphi + Z,$$

$$\left(\Phi^{\dagger}i\overleftrightarrow{D}_{\mu}\Phi\right)\left(\bar{f}\gamma^{\mu}f\right),\ \bar{L}\sigma_{\mu\nu}RHX^{\mu\nu}$$

$$\Rightarrow X^{\mu} \to \bar{f} + f,$$

DM decay

- $$\begin{split} \Phi^{\dagger} \Phi B_{\mu\nu} X^{\mu\nu}, \ \Phi^{\dagger} \Phi \tilde{B}_{\mu\nu} X^{\mu\nu}, (\Phi \to H) \\ \Rightarrow X^{\mu} \to \varphi/h + \gamma/Z, \end{split}$$
- $$\begin{split} H^{\dagger}\tau^{I}HW^{I}_{\mu\nu}X^{\mu\nu}, \ H^{\dagger}\tau^{I}H\tilde{W}^{I}_{\mu\nu}X^{\mu\nu} \\ \Rightarrow X^{\mu} \to \varphi/h + \gamma/Z, \end{split}$$

Three body decay $\Phi^{\dagger}\Phi B_{\mu\nu}X^{\mu\nu} \Rightarrow X^{\mu} \rightarrow \varphi + \varphi + \gamma/Z.$

Phenomenology

Some Estimations

The LHC higgs data give constraint on the mixing angle, roughly $\sin^2 \alpha \le 0.1$, then

$$\sin \alpha \simeq \frac{\lambda_{H\Phi} v_H v_\Phi}{m_2^2 - m_1^2}$$

take for example

 $M_X = 2 \text{TeV}, \ g_X \simeq 1, \text{ and } M_{H_2} = 200 \text{GeV}$ we have

$$\lambda_{H\Phi} \sim \frac{\sin \alpha \left(200^2 - 125^2\right)}{246 \times 2000} \sim 0.1 \times \sin \alpha$$

 $\lambda_{\Phi} \sim \frac{200^2}{2 \times 2000^2} = 0.005, \ \lambda_H = \frac{125^2}{2 \times 246^2} \sim 0.13.$

Perturbativity

Since we need no more new physics below Λ , the theory should be perturbative up to Λ .

$$\begin{aligned} \frac{d\lambda_H}{d\ln\mu} &= \frac{1}{16\pi^2} \left[24\lambda_H^2 + \lambda_{H\Phi}^2 - 6y_t^4 + \frac{3}{8} \left(2g_2^2 + \left(g_1^2 + g_2^2\right)^2 \right) - \lambda_H \left(9g_2^2 + 3g_1^2 - 12y_t^2 \right) \right] \\ \frac{d\lambda_{H\Phi}}{d\ln\mu} &= \frac{1}{16\pi^2} \left[2\lambda_{H\Phi} \left(6\lambda_H + 4\lambda_{\Phi} + 2\lambda_{H\Phi} \right) - \lambda_{H\Phi} \left(\frac{9}{2}g_2^2 + \frac{3}{2}g_1^2 - 6y_t^2 + 6g_X^2 \right) \right], \\ \frac{d\lambda_{\Phi}}{d\ln\mu} &= \frac{1}{16\pi^2} \left[2 \left(\lambda_{H\Phi}^2 + 10\lambda_{\Phi}^2 + 3g_X^4 \right) - 12\lambda_{\Phi}g_X^2 \right], \\ \frac{dg_X}{d\ln\mu} &= \frac{1}{16\pi^2} \frac{1}{3}g_X^3. \end{aligned}$$

$$\lambda_{\Phi}(\Lambda) < 4\pi \Rightarrow g_X \le 1.5$$

Relic density

$$\langle \sigma v \rangle = \frac{g_X^4}{144\pi M_X^2} \left[3 - \frac{8\left(M_{H_2}^2 - 4M_X^2\right)}{M_{H_2}^2 - 2M_X^2} + \frac{16\left(M_{H_2}^4 - 4M_{H_2}^2M_X^2 + 6M_X^4\right)}{\left(M_{H_2}^2 - 2M_X^2\right)^2} \right]$$

$$g_X \sim 0.57 \times \left(\frac{M_X}{1 \text{TeV}}\right)^{\frac{1}{2}}$$

Relic density

Direct detection

The cross section of dark matter scattering of a nucleon

$$\sigma \left(X_{\mu}N \to X_{\mu}N \right) = \frac{1}{16\pi} g_X^4 \sin^2 2\alpha \frac{f^2 m_N^2}{v_H^2} \left(\frac{1}{m_{H_2}^2} - \frac{1}{m_{H_1}^2} \right)^2 \left(\frac{M_X m_N}{M_X + m_N} \right)^2$$
$$m_{H_2} = m_{H_1}, \ \sigma = 0$$

XENON Limits

Blue line is the latest XENON100 limit.

Purple line shows the expected limit from XENON1T.

Parameter Space

Ωh²⊂[0.1145,0.1253]

1.2

0.8

0.6

0.4

Хü

 $M_{H_2}[GeV]$

23

 $\lambda_{H\Phi}$

Parameter Limits

 Blue band is for 2000GeV DM, and red one for 1000GeV.

Limits on the Mixing angle

- Upper bound: From XENON100 direct detection.
- Lower bound:

Lifetime should not be too long to spoil BBN.

Decaying DM and Indirect Signatures

An illustrative example

Effective operator

$$-\frac{g_{\Lambda}^2}{\Lambda^2} \left(\Phi^{\dagger} i \overleftrightarrow{D}_{\mu} \Phi \right) \left(\bar{f} \gamma^{\mu} f \right)$$

,

can be induced from the following UV complete theory,

$$\mathcal{L} = (D'_{\mu}\Phi)^{\dagger} D'^{\mu}\Phi + \bar{f}i\gamma^{\mu}D'_{\mu}f - \frac{1}{4}F'^{\mu\nu}F'_{\mu\nu} + (D'_{\mu}\phi)^{\dagger}D'^{\mu}\phi - V(\phi^{\dagger}\phi)$$

$$D'_{\mu}\Phi = (\partial_{\mu} + ig_{X}Q_{X}X_{\mu} + ig'Q'_{\Phi}A'_{\mu})\Phi,$$

$$D'_{\mu}\phi = (\partial_{\mu} + ig'Q'_{\phi}A'_{\mu})\phi,$$

$$D'_{\mu}f = (D^{\rm SM}_{\mu} + ig'Q'_{f}A'_{\mu})f.$$

$$\Lambda \to M_{A'}, \ g_{\Lambda} \to g' \qquad 27$$

An illustrative example

- The previous symmetry can be identified as the lepton number.
- It can also serve as the source for type-I seesaw mechanism.
- If it is only associated with one generation of leptons, DM then decays solely to that generation lepton pair.

Indirect Signatures

• DM decay can provide additional source,

$$Q(E, \vec{r}) = \frac{\rho(\vec{r})}{M_{\rm DM}\tau_{\rm DM}} \frac{dN^{e^{\pm}}}{dE}.$$
 micrOMEGAs 3.1

• We use the NFW density profile

$$\rho\left(\vec{r}\right) = \rho_{\odot}\left[\frac{r_{\odot}}{r}\right] \left[\frac{1 + (r_{\odot}/r_c)}{1 + (r/r_c)}\right]^2$$

 $\rho_{\odot} \simeq 0.3 {\rm GeV/cm^3}, \ r_{\odot} \simeq 8.5 {\rm kpc} \ {\rm and} \ r_c \simeq 20 {\rm kpc}$

 $X^{\mu} \to e^+ e^-$

E<10GeV can be affected by solar wind significantly. The spectrum is very sharp near the end point.

 $X^{\mu} \rightarrow e^+ e^-$

 $X^{\mu} \to \mu^{+}\mu^{-}$

- The spectrum is softer than the $X^{\mu} \rightarrow e^+ e^$
 - case.
- Muons decay

32

 $X^{\mu} \to \tau^+ \tau^-$

Only 1/3 taus decay to light leptons, the rest mainly to pions, $\pi^{\pm} \rightarrow \mu^{\pm} + \nu_{\mu}$ and $\pi^{0} \rightarrow 2\gamma_{34}$

Fermi-LAT Constraints

Fermi-LAT, <u>arXiv:1205.6474</u>

Summary

- We have investigated a simple extension of SM, $U_X(1)$ VDM model.
- Higher dimensional operators can induce the DM decay.
- Phenomenological constraints are shown.
- An illustrative example is given to explain the positron excess.