Composite quark partners in composite Higgs models at LHC

Thomas Flacke

Korea Advanced Institute of Science and Technology

[^0]KIAS workshop, 2013

Motivation

(:) Atlas and CMS found a Higgs-like resonance with a mass $m_{h} \sim 126 \mathrm{GeV}$ and couplings to $\gamma \gamma, W W, Z Z, b b$, and $\tau \tau$ compatible with the standard model Higgs.
© The standard model suffers from the hierarchy problem.
\Rightarrow We need to search for an SM extension with a Higgs-like state which provides an explanation for why $m_{h}, v \ll M_{p l}$.

Possible solution:
There is a symmetry which protects the quadratic terms in the Higgs potential from quadratically divergent loop corrections.

- classical scale invariance?
- supersymmetry?
- Higgs as a pseudo goldstone boson of a global symmetry. \leftarrow todays topic

Motivation

The SM Higgs doublet fulfills several tasks:

- it generates of the W and Z masses via EWSB,
- it generates quark and lepton masses via Yukawa terms in the action,
- it provides a physical scalar degree of freedom and predicts its couplings (consistent with the newly observed 126 GeV particle).
\Rightarrow In a composite Higgs setup, these beneficial features of the SM Higgs are most efficiently mimicked if the whole Higgs multiplet is realized as PGBs.

Simplest realization:

The minimal composite Higgs model (MCHM) Agashe, Contino, Pomarol [2004] based on $S O(5) / S O(4)$.

Composite Higgs model: general setup

"Consider a strongly coupled theory with a global symmetry $S O(5)\left(\times U(1)_{x}\right)$ which at a scale f is spontaneously broken to $S O(4)(\times U(1) x)$.

- The Goldstone bosons live in $S O(5) / S O(4) \rightarrow 4$ d.o.f.
- $S O(4) \simeq S U(2)_{L} \times S U(2)_{R} \rightarrow$

Gauging $S U(2)\llcorner$ yields an $S U(2)\llcorner$ goldstone doublet.
(Later: Gauging $Y=T_{R}^{3}+X$ allows for fermion embeddings with consistent $U(1)_{Y}$ charge.)

This choice already fixes the gauge and Higgs sector:
We use the CCWZ construction. Coleman, Wess, Zunino [1969], Callan, Coleman [1969]
Central element: the Goldstone boson matrix

$$
U(\Pi)=\exp \left(\begin{array}{c}
i \\
\bar{f} \\
\Pi_{i}
\end{array} T^{i}\right)=\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & \cos \bar{h} / f & \sin \bar{h} / f \\
0 & 0 & 0 & -\sin \bar{h} / f & \cos \bar{h} / f
\end{array}\right),
$$

where $\Pi=(0,0,0, \bar{h})$ with $\bar{h}=<h>+h$
and T^{i} are the broken $S O(5)$ generators.

From it, one can construct the CCWZ d_{μ}^{i} and e_{μ}^{a} symbols (roughly speaking: connections corresponding to broken / unbroken generators). E. g. kinetic term for the "Higgs":

$$
\begin{gathered}
\mathcal{L}_{\Pi}=\frac{f^{2}}{4} d_{\mu}^{i} d^{i \mu}=\frac{1}{2}\left(\partial_{\mu} h\right)^{2}+\frac{g^{2}}{4} f^{2} \sin ^{2}\left(\frac{\bar{h}}{f}\right)\left(W_{\mu} W^{\mu}+\frac{1}{2 c_{w}} Z_{\mu} Z^{\mu}\right) \\
\Rightarrow v=246 \mathrm{GeV}=f \sin \left(\frac{<\bar{h}>}{f}\right) \equiv f \sin (\epsilon)
\end{gathered}
$$

Note: In the above, the Higgs multiplet is parameterized as a Goldstone multiplet and it is assumed that a Higgs potential is induced which leads to EWSB.

Concrete realizations c.f. e.g. Review by Contino [2010]:
Couplings of the Higgs to the quark sector (most importantly to the top) explicitly break the $S O(5)$ symmetry
\Rightarrow couplings to the top sector induce an effective potential for the Higgs which induces EWSB.

How to include the quarks?

The model contains elementary fermions q and composite fermionic resonances of the strongly coupled theory, which mix via linear interactions

$$
\mathcal{L}_{m i x}=y \bar{q}_{I_{\mathcal{O}}} \mathcal{O}^{I_{\mathcal{O}}}+\text { h.c. }
$$

where \mathcal{O} is an operator of the strongly coupled theory in the rep. $I_{\mathcal{O}}$, and $\bar{q}_{I_{\mathcal{O}}}$ is an (incomplete) embedding of the elementary q into $S O(5)$.
One common choice (partially composite quarks):

$$
\begin{aligned}
\bar{q}_{L}^{5} & =\frac{1}{\sqrt{2}}\left(-i \bar{d}_{L}, \bar{d}_{L},-i \bar{u}_{L},-\bar{u}_{L}, 0\right) \\
\bar{u}_{R}^{5} & =\left(0,0,0,0, \bar{u}_{R}\right)
\end{aligned}
$$

This fixes composite partner quarks to be embedded as 5 reps. of $S O(5)$:

$$
\psi=\binom{Q}{\tilde{U}}=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
i D-i X_{5 / 3} \\
D+X_{5 / 3} \\
i U+i X_{2 / 3} \\
-U+X_{2 / 3} \\
\sqrt{2} \tilde{U}
\end{array}\right)
$$

How to include the quarks?

Remarks:

- Another "as minimal" embedding as considered here: embed q_{L} and ψ in the same way and u_{R} as a chiral $S O(5)$ singlet. \Rightarrow "(fully) composite right-handed quarks c.f.e.g. Rattazzi etal. [2012] (We studied this second case in detail \rightarrow results in the backup)
- The choice of rep. for the LH quarks and its partners is not unique. Another embedding which is sometimes discussed: $\mathbf{1 4}=\mathbf{1} \oplus \mathbf{4} \oplus \mathbf{9}$ Main qualitative new feature:
The 9 contains additional partner particles with exotic charges.

Back to the partially composite quarks in the 5. BSM particle content:

	U	$X_{2 / 3}$	D	$X_{5 / 3}$	\tilde{U}
$S O(4)$	$\mathbf{4}$	$\mathbf{4}$	$\mathbf{4}$	$\mathbf{4}$	$\mathbf{1}$
$S U(3)_{c}$	$\mathbf{3}$	$\mathbf{3}$	$\mathbf{3}$	$\mathbf{3}$	$\mathbf{3}$
$U(1)_{X}$ charge	$2 / 3$	$2 / 3$	$2 / 3$	$2 / 3$	$2 / 3$
EM charge	$2 / 3$	$2 / 3$	$-1 / 3$	$5 / 3$	$2 / 3$

Fermion Lagrangian:

$$
\begin{aligned}
\mathcal{L}_{\text {comp }} & =i \bar{Q}\left(D_{\mu}+i e_{\mu}\right) \gamma^{\mu} Q+i \bar{U} \bar{D} \tilde{U}-M_{4} \bar{Q} Q-M_{1} \tilde{U} \tilde{U}+\left(i c \bar{Q}^{i} \gamma^{\mu} d_{\mu}^{i} \tilde{U}+\text { h.c. }\right), \\
\mathcal{L}_{e l, \text { mix }} & =i \bar{q}_{L} D q_{L}+i \bar{u}_{R} D u_{R}-y_{L} f \bar{q}_{L}^{5} U_{g s} \psi_{R}-y_{R} f \bar{u}_{R}^{5} U_{g s} \psi_{L}+\text { h.c. }
\end{aligned}
$$

Derivation of Feynman rules:

- expand $d_{\mu}, e_{\mu}, U_{g s}$ around $\langle h\rangle$,
- diagonalize the mass matrices,
- match the lightest up-type mass with the SM quark mass (m_{u} or m_{c}) \rightarrow this fixes y_{L} in terms of the other parameters $\left(y_{R} \sim 1 \Rightarrow y_{L} \ll 1\right)$
- calculate the couplings in the mass eigenbasis.

Partners in the fourplet

Lets first consider the limit $M_{1} \rightarrow \infty$.
\tilde{U} decouples, and the remaining quark partners form a 4 of $S O(4)$.
Mass eigenstates:
$U_{p / m}=(1 / \sqrt{2})\left(U \pm X_{2 / 3}\right), D, X_{5 / 3}$.
Masses:

$$
m_{U_{p}}=m_{D}=m_{X_{5 / 3}}=M_{4}, m_{U_{m}}=\sqrt{M_{4}^{2}+\left(y_{R} f \sin (\epsilon)\right)^{2}}, \text { with } \epsilon=\langle h\rangle / f .
$$

"Mixing" couplings:

$$
\begin{aligned}
g_{w u x}=-g_{w u D}=-c_{w} g_{z u u_{p}} & =\frac{g}{2} \cos \in \sin \varphi_{4} \\
\lambda_{h u u_{m}} & =y_{R} \cos \epsilon \cos \varphi_{4}
\end{aligned}
$$

with

$$
\tan \varphi_{4} \equiv \frac{y_{R} f \sin \epsilon}{M_{4}}
$$

Partners in the fourplet

Production mechanisms (shown here: $X_{5 / 3}$ production)

(a) EW single production

Decays:

- $X_{5 / 3} \rightarrow W^{+} u(100 \%)$,
- $D \rightarrow W^{-} u(100 \%)$,
- $U_{p} \rightarrow Z u(100 \%)$,
- $U_{m} \rightarrow h u$ (100\%).

NOTE:

- The EW production mechanisms strongly differs for 1st, 2nd, and 3rd generation partners due to the differing PDFs for u, c, t in the proton.
- The final states (search signatures) differ:
- 1st generation partners: u, d quarks in the final state \rightarrow jets.
- 2nd generation partners: $c, s \rightarrow$ jets, potentially tagable c in the future
- 3nd generation partners: $t, b \rightarrow$ well distinguishable from jets

We focus on 1st and 2nd family partners (c.f. Rattazzi etal. [2012] for 3rd family partners). \rightarrow relevant measured final states:

- Single production: Wjj, Zjj
[D0 Collaboration], Phys. Rev. Lett. 106, 081801 (2011)
[CDF Collaboration], CDF/PUB/EXOTIC/PUBLIC/1026
[ATLAS Collaboration], ATLAS-CONF-2012-137 (4.64 fb-1 7 TeV)
[CMS Collaboration],CMS-PAS-EXO-12-024 (19.8 fb $\left.{ }^{-1} 8 \mathrm{TeV}\right)$
- Pair production: WWjj, ZZjj, hhjj

```
[D0 Collaboration], Phys. Rev. Lett. 107, 082001 (2011)
[CDF Collaboration], Phys. Rev. Lett. 107, 261801 (2011)
[ATLAS Collaboration], Phys. Rev. D 86, 012007 (2012) (1.04 fb-1 7 TeV)
[CMS Collaboration], CMS-PAS-EXO-12-042 (19.6 fb}\mp@subsup{\mp@code{-1}}{-1}{8}\textrm{TeV}); Leptoquark search, final state: \mu\mujj
```


Determining bounds from searches

To determine the bounds from Tevatron, ATLAS and CMS searches we

- implement the model [FeynRules2 \rightarrow MadGraph5 (using CTEQ6L)],
- simulate the BSM signals on parton level,
- compare with the bounds established by the experimental searches.

Partial Compositeness / 4plet
E.g.

Determining bounds from searches

Determining bounds from searches

Partners in the singlet (qualitative discussion)

Now lets look at the opposite limit: M_{1} finite and $M_{4} \rightarrow \infty$.
Then, all fourplet states decouple, and the only remaining BSM state is \tilde{U}.
Mass: $m_{\tilde{U}}=\sqrt{M_{1}^{2}+\left(y_{R} f \cos (\epsilon)\right)^{2}}$
only "mixing" coupling:

$$
\lambda_{h u \tilde{U}}=y_{R} \sin \epsilon \cos \varphi_{1}, \quad \text { with } \quad \tan \varphi_{1} \equiv \frac{y_{R} f \cos \epsilon}{M_{1}}
$$

Production: pair-production (QCD and EW)
Decay: $\tilde{U} \rightarrow h j(100 \%)$
Most promising signal: $p p \rightarrow h h j j$.
We did not find any current ATLAS or CMS searches for this channel, so far!
\Rightarrow Only "theory" bound currently: $m_{\tilde{U}}>m_{h}$ (otherwise Higgs BR are modified)
Other option: Deviations in $p p \rightarrow h(h j j) \rightarrow \gamma \gamma X$ or $b \bar{b} X$
i.e. modifications to SM Higgs signals and their angular and p_{T} distributions.
[TF, J.H. Kim, S.J. Lee, S.H. Lim, in preparation]

General case: M_{1} and M_{4} finite.

We have obtained bounds on the fourplet partners with the singlet decoupled.
How are these bounds modified when the singlet is not decoupled?
BSM Particle content: $X_{5 / 3}, D, U_{p}, U_{1}, U_{2}$ Where $U_{1,2}$ are the mass eigenstates of $U_{m}-\tilde{U}$ mixing.

Masses: $m_{U_{p}}=m_{D}=m_{X_{5 / 3}}=M_{4}$, $m_{U_{1,2}}=\frac{1}{2}\left[M_{1}^{2}+M_{4}^{2}+y_{R}^{2} f^{2} \mp \sqrt{\left(M_{1}^{2}-M_{4}^{2}+y_{R}^{2} f^{2}\right)^{2}-4 \sin ^{2} \epsilon\left(M_{1}^{2}-M_{4}^{2}\right) y_{R}^{2} f^{2}}\right]$.
"mixing" couplings with light quarks:

$$
\begin{aligned}
\lambda_{h u U_{1}} & \approx-y_{R} \cos \epsilon \cos \varphi_{4} \cos \tilde{\varphi}_{1}, \\
\lambda_{h u U_{2}} & \approx y_{R} \sin \epsilon \cos \varphi_{4} \cos \tilde{\varphi}_{1}, \\
g_{W u D}=-g_{W u x}=-c_{w} g_{Z u U_{p}} & \approx \frac{g}{2} \cos \epsilon \sin \varphi_{4} \cos \tilde{\varphi}_{1},
\end{aligned}
$$

where

$$
\tan \tilde{\varphi}_{1} \equiv \frac{y_{R} f \cos \epsilon / M_{1}}{1+\left(y_{R} f \sin \epsilon\right)^{2} / M_{4}^{2}}
$$

...also present: "Mixing" couplings amongst heavy quarks partners: $\lambda_{h U_{1} U_{2}}$, $g_{z} U_{1 / 2} U_{p}$, and analogous for charged couplings.

General case: M_{1} and M_{4} finite.

Consequences of finite M_{1} for fourplet bounds:

- The single-production cross section of $X_{5 / 3}, D, U_{1}$ is reduced. Physical reason: The production arises due to mixing of u_{R} with the fourplet, but now, u_{R} also mixes with the singlet.
- If the lighter up-type mass eigenstate U_{1} is mostly singlet (for $M_{1} \lesssim M_{4}$): Fourplet states $U_{p}, D, X_{5 / 3}$ can also cascade decay via the U_{1}
\rightarrow The previously considered signal cross section gets reduced due to the BR into cascade decays.

General case: M_{1} and M_{4} finite, up-partners

Limits on y_{R}^{u} as a function of M_{4} for different values of M_{1}.
Solid: full limits. Dashed: limits ignoring signal loss due to cascade decays.

Conclusions

- Composite Higgs models provide a viable solution to the hierarchy problem and generically predict partner states to the fermions.
- The phenomenology of light quark partners strongly differs from top-partner phenomenology.
- For partially composite $u(c)$ quarks with partners in the fourplet, we find $M_{4}^{u} \gtrsim 1.8 \mathrm{TeV}, M_{4}^{c} \gtrsim 610 \mathrm{GeV}$ (both for $y_{R}^{X}=1$) and $M_{4}^{u / c} \gtrsim 530 \mathrm{GeV}$ (independent of y_{R}^{L}).
- For partially composite $u(c)$ quarks with partners in the singlet, currently no bounds are available (only trivial bound: $m_{\tilde{U}}>m_{h}$). [work in progress at kalst]
- The fourplet bounds can be substantially weakened when considering the generic case of fourplet and singlet partners being present.
- We performed an analogous analysis for fully composite right-handed light quarks, for which many of the aspects presented here apply as well.

Fully composite up- and charm quarks

Fermion embedding

Like before:

$$
\bar{q}_{L}^{5}=\frac{1}{\sqrt{2}}\left(-i \bar{d}_{L}, \bar{d}_{L},-i \bar{u}_{L},-\bar{u}_{L}, 0\right) \quad, \quad \psi=\binom{Q}{\tilde{U}}=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
i D-i X_{5 / 3} \\
D+X_{5 / 3} \\
i U+i X_{2 / 3} \\
-U+X_{2 / 3} \\
\sqrt{2} \tilde{U}
\end{array}\right),
$$

but now, embed u_{R} as a chiral composite $S O(5)$ singlet.

Fermion-Lagrangian

$$
\begin{aligned}
\mathcal{L}_{\text {comp }}^{f}= & i \bar{\psi}\left(D_{\mu}+i e_{\mu}\right) \gamma^{\mu} \psi+i \bar{u}_{R} D u_{R}-M_{4} \bar{Q} Q-M_{1} \tilde{U} \tilde{U} \\
& +\left[i c_{L} \bar{Q}_{L}^{i} d_{\mu}^{i} \gamma^{\mu} \tilde{U}_{L}+i c_{R} \bar{Q}_{R}^{i} d_{\mu}^{i} \gamma^{\mu} \tilde{U}_{R}+\text { h.c. }\right]+\left[i c_{1} \bar{Q}_{R}^{i} d_{\mu}^{i} \gamma^{\mu} u_{R}+\text { h.c. }\right], \\
\mathcal{L}_{\text {eltmix }}^{f}= & i \bar{q}_{L} D q_{L}-\left[y f\left(\bar{q}_{L}^{5} U_{g s}\right)_{i} Q_{R}^{i}+\right. \\
& \left.\quad+y c_{2} f\left(\bar{q}_{L}^{5} U_{g s}\right)_{5} u_{R}+y c_{3} f\left(\bar{q}_{L}^{5} U_{g s}\right)_{5} \tilde{U}_{R}+\text { h.c. }\right],
\end{aligned}
$$

Determining bounds from searches

Determining bounds from searches

Determining bounds from searches

General case: M_{1} and M_{4} finite, up-partners, fully composite

Limits on c_{1}^{u} (solid) and c_{1}^{c} (dashed) as a function of M_{4} for different values of c_{R} / c_{1} (with $c_{L}=c_{R}$).

Definition of d and e symbols:

$$
\begin{aligned}
d_{\mu}^{i} & =\sqrt{2}\left(\frac{1}{f}-\frac{\sin \Pi / f}{\Pi}\right) \frac{\vec{\Pi} \cdot \nabla_{\mu} \vec{\Pi}}{\Pi^{2}} \Pi^{i}+\sqrt{2} \frac{\sin \Pi / f}{\Pi} \nabla_{\mu} \Pi^{i} \\
e_{\mu}^{a} & =-A_{\mu}^{a}+4 i \frac{\sin ^{2}(\Pi / 2 f)}{\Pi^{2}} \vec{\Pi}^{t} t^{a} \nabla_{\mu} \vec{\Pi}
\end{aligned}
$$

d_{μ} symbol transforms as a fourplet under the unbroken $S O(4)$ symmetry, while e_{μ} belongs to the adjoint representation.
$\nabla_{\mu} \Pi$ is the "covariant derivative" of the Goldstone field Π

$$
\nabla_{\mu} \Pi^{i}=\partial_{\mu} \Pi^{i}-i A_{\mu}^{a}\left(t^{a}\right)_{j}^{i} \Pi^{j}
$$

A_{μ} : gauge fields of the gauged subgroup of $S O(4) \simeq S U(2)_{L} \times S U(2)_{R}$

$$
\begin{aligned}
A_{\mu}= & \frac{g}{\sqrt{2}} W_{\mu}^{+}\left(T_{L}^{1}+i T_{L}^{2}\right)+\frac{g}{\sqrt{2}} W_{\mu}^{-}\left(T_{L}^{1}-i T_{L}^{2}\right) \\
& +g\left(c_{w} Z_{\mu}+s_{w} A_{\mu}\right) T_{L}^{3}+g^{\prime}\left(c_{w} A_{\mu}-s_{w} Z_{\mu}\right) T_{R}^{3}
\end{aligned}
$$

Explicit form in unitary gauge:

$$
\left\{\begin{array}{l}
e_{L}^{1,2}=-\cos ^{2}\left(\frac{\bar{h}}{2 f}\right) W_{L}^{1,2} \\
e_{L}^{3}=-\cos ^{2}\left(\frac{\bar{h}}{2 f}\right) W^{3}-\sin ^{2}\left(\frac{\bar{h}}{2 f}\right) B
\end{array},\left\{\begin{array}{l}
e_{R}^{1,2}=-\sin ^{2}\left(\frac{\bar{h}}{2 f}\right) W_{L}^{1,2} \\
e_{R}^{3}=-\cos ^{2}\left(\frac{\bar{h}}{2 f}\right) B-\sin ^{2}\left(\frac{\bar{h}}{2 f}\right) W^{3}
\end{array}\right.\right.
$$

and

$$
\left\{\begin{array}{l}
d_{\mu}^{1,2}=-\sin (\bar{h} / f) \frac{W_{\mu}^{1,2}}{\sqrt{2}} \\
d_{\mu}^{3}=\sin (\bar{h} / f) \frac{B_{\mu}-W_{\mu}^{3}}{\sqrt{2}} \\
d_{\mu}^{4}=\frac{\sqrt{2}}{f} \partial_{\mu} h
\end{array}\right.
$$

[^0]: C. Delaunay, TF, J. Gonzales-Fraile,
 S.J. Lee, G. Panico, G. Perez
 appearing tomorrow
 TF, J.H. Kim, S.J. Lee, S.H. Lim work in progress

