Monopoles, VDMs & dark radiation

Wan-il Park (KIAS)

(arXiv: 1311.1035, in collaboration with Seungwon Baek & Pyungwon Ko)

KIAS PPC 2013, Nov. 15, Seoul

Dark matter

Planck says ...

Cosmological parameters (based on LCDM)

	Planck		Planck+lensing		Planck+WP	
Parameter	Best fit	68% limits	Best fit	68% limits	Best fit	68% limits
Ω ₆ h ²	0.022068	0.02207 ± 0.00033	0.022242	0.02217 ± 0.00033	0.022032	0.02205 ± 0.00028
$\Omega_c h^2$	0.12029	0.1196 ± 0.0031	0.11805	0.1186 ± 0.0031	0.12038	0.1199 ± 0.0027
1009 _{MC}	1.04122	1.04132 ± 0.00068	1.04150	1.04141 ± 0.00067	1.04119	1.04131 ± 0.00063
τ	0.0925	0.097 ± 0.038	0.0949	0.089 ± 0.032	0.0925	0.089+0.012
<i>n</i> _s	0.9624	0.9616 ± 0.0094	0.9675	0.9635 ± 0.0094	0.9619	0.9603 ± 0.0073
$\ln(10^{10}A_s)$	3.098	3.103 ± 0.072	3.098	3.085 ± 0.057	3.0980	3.089+0.024
Ω _Λ	0.6825	0.686 ± 0.020	0.6964	0.693 ± 0.019	0.6817	0.685+0.018 -0.016
Ω _m	0.3175	0.314 ± 0.020	0.3036	0.307 ± 0.019	0.3183	0.315+0.016
σ8	0.8344	0.834 ± 0.027	0.8285	0.823 ± 0.018	0.8347	0.829 ± 0.012
āe	11.35	11.4+4.0	11.45	10.8+3.1	11.37	11.1 ± 1.1
<i>H</i> ₀	67.11	67.4 ± 1.4	68.14	67.9 ± 1.5	67.04	67.3 ± 1.2
10 ⁹ A _s	2.215	2.23 ± 0.16	2.215	2.19+0.12	2.215	2.196+0.051 -0.060
$\Omega_m h^2$	0.14300	0.1423 ± 0.0029	0.14094	0.1414 ± 0.0029	0.14305	0.1426 ± 0.0025
$\Omega_m h^3$	0.09597	0.09590 ± 0.00059	0.09603	0.09593 ± 0.00058	0.09591	0.09589 ± 0.00057
Yp	0.247710	0.24771 ± 0.00014	0.247785	0.24775 ± 0.00014	0.247695	0.24770 ± 0.00012
Age/Gyr	13.819	13.813 ± 0.058	13.784	13.796 ± 0.058	13.8242	13.817 ± 0.048
ζ	1090.43	1090.37 ± 0.65	1090.01	1090.16 ± 0.65	1090.48	1090.43 ± 0.54
r	144.58	144.75 ± 0.66	145.02	144.96 ± 0.66	144.58	144.71 ± 0.60
1000.	1.04139	1.04148 ± 0.00066	1.04164	1.04156 ± 0.00066	1.04136	1.04147 ± 0.00062
Zdrag	1059.32	1059.29 ± 0.65	1059.59	1059.43 ± 0.64	1059.25	1059.25 ± 0.58
<i>I</i> drag	147.34	147.53 ± 0.64	147.74	147.70 ± 0.63	147.36	147.49 ± 0.59
kp	0.14026	0.14007 ± 0.00064	0.13998	0.13996 ± 0.00062	0.14022	0.14009 ± 0.00063
1000 _D	0.161332	0.16137 ± 0.00037	0.161196	0.16129 ± 0.00036	0.161375	0.16140 ± 0.00034
4q	3402	3386 ± 69	3352	3362 ± 69	3403	3391 ± 60
1000eq	0.8128	0.816 ± 0.013	0.8224	0.821 ± 0.013	0.8125	0.815 ± 0.011
r _{drag} /D _V (0.57)	0.07130	0.0716 ± 0.0011	0.07207	0.0719 ± 0.0011	0.07126	0.07147 ± 0.00091

Energy budget

Dark matter is ...

Properties

- electromagnetically neutral (invisible)
- matter-like (clustered)
- long-living ($\tau \gtrsim 10^{26-30}$ s) or absolutely stable
- mostly cold

Productions

- thermal (freeze-in, freeze-out)
- non-thermal

Constraints

Candidates of DMs

- Moduli, axion, ...
- LSP (gravitino, neutralino, sneutrino, singlino, axino, ...)
- LKP (eg, KK-photon)

or

- Scalar
- Fermion
- Vector

DM is stable because...

• Symmetries

- (ad hoc) Z₂ symmetry
- R-parity
- Topology (from a broken sym.)
- Very small mass and weak coupling

e.g: QCD-axion ($m_a \sim \Lambda_{QCD}^2/f_a$; $f_a \sim 10^{9-12} \text{ GeV}$)

$$\Gamma_a \sim \mathcal{O}(10^{-5}) \frac{m_a^3}{f_a^2} \ll H_0 \sim 10^{-42} \text{GeV}$$

But for WIMP ...

• Global sym. is not enough since

 $-\mathcal{L}_{\rm int} = \begin{cases} \lambda \frac{\phi}{M_{\rm P}} F_{\mu\nu} F \mu\nu & \text{for boson} \\ \lambda \frac{1}{M_{\rm P}} \bar{\psi} \gamma^{\mu} D_{\mu} \ell_{Li} H^{\dagger} & \text{for fermion} \end{cases}$

Observation requires [M.Ackermann et al. (LAT Collaboration), PRD 86, 022002 (2012)]

$$au_{\rm DM} \gtrsim 10^{26-30} {
m sec} \Rightarrow \begin{cases} m_{\phi} \lesssim \mathcal{O}(10) {
m keV} \\ m_{\psi} \lesssim \mathcal{O}(1) {
m GeV} \end{cases}$$

 \Rightarrow WIMP is unlikely to be stable

• SM is guided by gauge principle

It looks natural and may need to consider a gauge symmetry in dark sector, too.

Principles for BSM

- Gauge symmetry
 - can make DM absolutely stable.
- Renormalizability
 - does not miss physics which EFT can not catch.
- Singlet portals
 - allows communication of DS to SM (thermalization, detectability, ...)

Dark gauge symmetry broken to a U(I)

Magnetic monopoles

• 't Hoft-Polyakov monopoles exist when vacuum manifold contains non-shrinkable surfaces.

 $\square \Pi_2(\mathcal{M}) \neq \mathcal{I}$

(semi-) simple symmetry group broken to a subgroup with an U(I) factor

(hedgehog conf.:
$$\phi^a(\hat{r}) = v_\phi \hat{r}^a$$
 with $(\phi^a(\hat{r}))^2 = v_\phi^2$)

Vector dark matter(?)

Renormalizable (?) model

 $\mathcal{L} = \mathcal{L}_{\rm SM} - \frac{1}{4} (F_V)^2 - \frac{1}{2} m_V^2 V_\mu V^\mu - \frac{1}{4} \lambda_V (V_\mu V^\mu)^2 - \frac{1}{2} \lambda_{VH} V_\mu V^\mu H^\dagger H$

- not unitary!
- not gauge invariant!
- dark Higgs is needed.
- Corrected simple model

 $\mathcal{L} = \mathcal{L}_{\rm SM} - \frac{1}{4} (F_V)^2 + (D\phi)^2 - \lambda_\phi |\phi|^4 - \lambda_{\phi H} |\phi|^2 H^{\dagger} H$

SSB \Rightarrow massive VDM! \Rightarrow no dark radiation!

Dark Radiation

Observations

 $N_{\rm eff} = 3.30^{+0.54}_{-0.51} \qquad \bigtriangleup \qquad \Delta N_{\rm eff} = 0.254^{+0.54}_{-0.51}$ (Planck+WP+highL+BAO, 95%CL)

Sources

- relativistic degrees of freedom other than SM photons (light sterile neutrinos, (QCD-) axions, ...)

Size of contribution

- assuming no more non-SM light degrees below $T_{\mathsf{DR},\mathsf{kd}}$,

$$\Delta N_{\rm eff} \equiv \frac{\rho_{\rm DR}}{\rho_{\nu}} = \frac{8}{7} \left(\frac{11}{4}\right)^{4/3} \frac{g_{\rm DR}}{2} \left(\frac{g_{*S}(T_0)}{g_{*S}(T_{\rm DR,kd})}\right)^{4/3}$$

$\begin{array}{c} SU(2)_h \rightarrow U(1)_h \\ + \\ Higgs portal \end{array}$

The Model

Lagrangian

• Symmetry breaking

$$\phi^T = (0, 0, v_\phi) \Rightarrow SU(2) \to U(1)$$

ø E

• **Particle spectra** $\left(V^{\pm} \equiv \frac{1}{\sqrt{2}}(V_1 \mp iV_2), \gamma' \equiv V_3, H_1, H_2\right)$

$$m_{V} = g_{X} v_{\phi}$$

$$m_{M} = m_{V} / \alpha_{X}$$

$$m_{1,2} = \frac{1}{2} \left[m_{hh}^{2} + m_{\phi\phi}^{2} \mp \sqrt{\left(m_{hh}^{2} - m_{\phi\phi}^{2}\right)^{2} + 4m_{\phi h}^{4}} \right]$$

DM self-interacts

• Constraint from dwarf galaxy scale halos $\sigma_T/m_V \lesssim 35 \text{cm}^2/g \Rightarrow g_X \lesssim 9 \times 10^{-2} \left(\frac{m_V}{1 \text{TeV}}\right)^{3/4}$

• Possible solutions to some puzzles of CDM

- core/cusp problem: [S.-H Oh et al., arXiv:1011.0899] simulated cusp of DM density profile contrary to the cored one found in the obvserved LSB galaxies and dSphs
- "too big to fail" problem: [M. Boylan-Kolchin et al., arXiv:1111.2048] simulated high internal density concentration of the subhalos in the MW-sized halos contrary to the observed brightest MW satellites
- Dark radiation (
 massless dark photon)

Vacuum stability

[S. Baek, P. Ko, WIP & E. Senaha, JHEP(2012)]

[G. Degrassi et al., 1205.6497]

Relic densities

Monopoles (Kibble-Zurek mechanism)-1/2

$$\epsilon \equiv (T_{\rm c} - T) / T_{\rm c}$$

$$\xi = \xi_0 |\epsilon|^{-\nu}, \ \xi_0^{-1} \sim \sqrt{|m_\phi(0)^2|}$$

$$\tau = \tau_0 |\epsilon|^{-\mu}, \ \tau_0 \approx \xi_0$$

$$\tau_Q = (t - t_{\rm c}) / |\epsilon| \rightarrow \tau_0 |\epsilon|^{-(1+\mu)}$$

$$\Rightarrow \xi \sim \xi_0 (\tau_Q / \tau_0)^{-\frac{\nu}{1+\mu}}$$

$$n \sim 1/\xi^3 \qquad \qquad Y_i \approx \frac{\left(\sqrt{\lambda_{\phi}/2}\right)^3}{C_S} \left[\frac{1}{\sqrt{\lambda_{\phi}/2}} C_0^{1/2} \frac{m}{hM_{\rm P}}\right]^{3\nu/(1+\mu)}$$

Landau – Ginzburg form of $V(\phi) : \Rightarrow \nu = \mu = 1/2$ Quantum – corrected $: \Rightarrow \nu = \mu = 0.7$

• Monopoles (relic density)-2/2

$$g_X = 9 \times 10^{-2} \left(m_V / 1 \text{TeV} \right)^{3/4} \Rightarrow v_\Phi = \mathcal{O}(1 - 10) \text{TeV}$$

VDM (thermal freeze-out)

Direct detection

Monopole-nucleon scattering cross section

$$\sigma_p \ \lesssim \ \frac{\lambda_{\Phi H}^2}{64\pi m_{\rm M}^2} \left(\frac{m_p}{m_h}\right)^4 f_p^2 \ \simeq \ \frac{3.4 \times 10^{-28}}{{\rm GeV}^2} \left(\frac{\lambda_{\Phi H}}{0.1}\right)^2 \left(\frac{10^7 \, {\rm GeV}}{m_{\rm M}}\right)^2$$

VDM-nucleon scattering cross section

$$\sigma_p = \frac{4\mu_V^2}{\pi} \left(\frac{g_X s_\alpha c_\alpha m_p}{2v_H}\right)^2 \left(\frac{1}{m_1^2} - \frac{1}{m_2^2}\right)^2 f_p^2,$$

DR from dark photon

• T at kinetic decoupling of DR

Higgses mediate DM-SM scattering $\Rightarrow \mathcal{M} = -v_{\Phi}g_X^2 \sin \alpha \cos \alpha \left(\frac{1}{t-m_1^2} - \frac{1}{t-m_2^2}\right) \frac{\sqrt{2}m_f}{v_H}$

 $T_{\rm QCD} < T_{\rm kd} \le T_{\rm fz} \sim m_V/25$

$$\Delta N_{\text{eff}} = \frac{8}{7} \left(\frac{11}{4}\right)^{4/3} \frac{g_{\text{DR}}}{2} \left(\frac{g_{*S}(T_0)}{g_{*S}(T_{\text{DR,kd}})}\right)^{4/3} \approx 0.08 - 0.11$$

Conclusions

- t'Hoot-Polyakov monopole model is a nice example of VDM accompanying DR.
- The abundance of monopoles is $(10^{-6}-10^{-4})x\Omega_{cdm}$
- CDM relic density is obtained from VDM via s-channel resonant annihilation thanks to Higgs portal interaction.
- Once m_V is known, m_η is known or vice versa.

Backupl

't Hoot-Polyakov Monopoles

Homotopy group & monopoles

Let $\mathcal{G} \to \mathcal{H}$ with $\mathcal{M} = \mathcal{G}/\mathcal{H}$ $\Pi_{2}(\mathcal{G}/\mathcal{H}) = \left\{ \begin{array}{ll} \Pi_{1}(\mathcal{H}) & \text{for simply - connected } \mathcal{G} \\ \Pi_{1}(\mathcal{H})/\Pi_{1}(\mathcal{G}) & \text{for not - simply - connected } \mathcal{G} \end{array} \right.$ $\mathcal{G} = \text{semi - simple} \\ \mathcal{H} = \tilde{\mathcal{H}} \times U(1) \end{array} \right\} \longrightarrow \Pi_{1}(\mathcal{H}) \neq \mathcal{I} \Rightarrow \text{Monopole!}$