Non-perturbative Renormalization of Bilinear Operators with Staggered Fermions

Jangho Kim, Jongjeong Kim, Weonjong Lee, Boram Yoon

Seoul National University

The 3rd KIAS Workshop on Particle Physics and Cosmology

• • • • • • • • • • • • •

Introduction

- We present matching factors for the bilinear operators obtained using the non-perturbative renormalization method (NPR) for improved staggered fermions on the MILC asqtad lattices ($N_f = 2 + 1$).
- We obtain the wave function renormalization factor Z_q from the conserved vector and axial currents. Also we obtain the mass renormalization factor Z_m from scalar and pseudo-scalar bilinear operators.
- We also calculate the renormalization factor of other bilinear operators.

イロト イヨト イヨト イヨト

Bilinear Operator Renormalization

• \tilde{p} is the momentum in reduced Brillouin zone.

$$p\in (-rac{\pi}{a},rac{\pi}{a}]^4, \qquad ilde{p}\in (-rac{\pi}{2a},rac{\pi}{2a}]^4, \qquad p= ilde{p}+\pi_B$$

where $\pi_B (\equiv \frac{\pi}{a}B)$ is cut-off momentum in hypercube.

- a : lattice spacing.
- B : vector in hypercube. Each element is 0 or 1 ex) B = (0, 0, 1, 1)

イロト イヨト イヨト イヨト

Figure: The Green's functions of bilinear operator : The diagrams that contribute to bilinear operator

イロト イヨト イヨト イヨ

Red Circle : $1 \mathrm{PI}$ Diagram.

Jangho Kim (Seoul National University)

KIAS Workshop 5 / 19

イロト イヨト イヨト イヨ

Amputated Green's function $\widetilde{\Lambda}^{a}$

Projected amputated Green's function $\Gamma^{\alpha\beta}$

A D > A B > A B >

- α , β : the indices to represent different operators. ex) $\alpha = (\gamma_{\mu} \otimes 1)$, $\beta = (1 \otimes 1)$
- M.C. : momentum conservation condition. $\tilde{p} = \tilde{q} + \tilde{k}$

The projection operator is

$$\hat{\mathbb{P}}^{eta}_{BA;c_2c_1} = rac{1}{48} \overline{(\gamma^{\dagger}_{\mathcal{S}'}\otimes\xi^{\dagger}_{\mathcal{F}'})}_{BA} \delta_{c_2c_1}$$

The renormalization of $\Gamma(\tilde{p}, \tilde{q})$ is

$$\Gamma_{R}^{lpha\sigma}(ilde{p}, ilde{q}) = \sum_{eta} Z_{q}^{-1} Z_{O}^{lphaeta} \Gamma_{B}^{eta\sigma}(ilde{p}, ilde{q})$$

- A, B: hypercube index
- c : color index
- α , β , σ : the indices to represent different operators.
- Γ_B : bare projected amputated Green's function
- Γ_R : renormalized projected amputated Green's function
- Z_q : the wave function renormalization factor for quark fields
- $Z_O^{\alpha\beta}$: the renormalization factor matrix element which represents the mixing between the α and β operators.

イロト 不得下 イヨト イヨト

The RI-MOM scheme prescription is

$$\Gamma_{R}^{\alpha\sigma}(\tilde{p},\tilde{p})=\Gamma_{tree}^{\alpha\sigma}(\tilde{p},\tilde{p})=\delta^{\alpha\sigma},$$

where $\Gamma_{tree}^{\alpha\sigma}(\tilde{p},\tilde{p})$ is the projected amputated Green's function at the tree level.

Therefore, the renormalization factor is obtained from the following equation.

$$Z_O^{lphaeta} = Z_q \cdot [\Gamma_B^{-1}(ilde{p}, ilde{p})]^{lphaeta}$$

イロン イロン イヨン イヨ

Simulation Detail

- $20^3 \times 64$ MILC asqtad lattice ($a \approx 0.12 fm, am_\ell/am_s = 0.01/0.05$).
- HYP smeared staggered fermions as valence quarks.
- The number of configurations is 30.
- 5 valence quark masses (0.01, 0.02, 0.03, 0.04, 0.05)
- 14 external momenta in the units of $(\frac{2\pi}{L_s}, \frac{2\pi}{L_s}, \frac{2\pi}{L_s}, \frac{2\pi}{L_t})$.

• We do the uncorrelated fitting and use the jackknife resampling method to estimate statistical errors.

n(x, y, z, t)	а <i></i>	GeV	n(x, y, z, t)	а <i></i>	GeV
(1, 0, 1, 3)	0.5330	0.8835	(1, 2, 2, 4)	1.0210	1.6922
(1, 1, 1, 2)	0.5785	0.9588	(2, 1, 2, 6)	1.1114	1.8420
(1, 1, 1, 3)	0.6187	1.0254	(2, 2, 2, 7)	1.2871	2.1332
(1, 1, 1, 4)	0.6710	1.1122	(2, 2, 2, 8)	1.3421	2.2243
(1, 1, 1, 5)	0.7328	1.2146	(2, 2, 2, 9)	1.4018	2.3233
(1, 1, 1, 6)	0.8019	1.3291	(2, 3, 2, 7)	1.4663	2.4302
(1, 2, 1, 5)	0.9128	1.5128	(3, 3, 3, 9)	1.8562	3.0764

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Wave Function Renormalization Factor

For the conserved vector current, the renormalization factor $Z_O^{\alpha\beta} = 1$.

Therefore

$$Z_q^{\mathsf{RI}-\mathsf{MOM}} = \Gamma_0^{lphaeta}(\widetilde{p},\widetilde{p})\,,$$

where $\alpha = \beta = (\gamma_{\mu} \otimes 1)$. The superscript RLMOM denote

The superscript RI-MOM denotes that the wave function renormalization factor Z_q is defined in the RI-MOM scheme.

<ロ> (日) (日) (日) (日) (日)

RI-MOM scheme to SI scheme

We convert the raw data in the RI-MOM scheme into the scale-invariant(SI) data by removing the scale-dependent part of the RG evolution matrix as follows.

$$Z_q^{\mathsf{SI}} = \frac{c(\alpha_s(\mu_0))}{c(\alpha_s(\mu))} Z_q^{\mathsf{RI-MOM}}(\mu), \qquad (\mu_0 = 2\mathsf{GeV}, \quad \mu^2 = \tilde{p}^2)$$

This Wilson coefficient c(x) is calculated using four-loop anomalous dimension.

< 6 b

- < ∃ →

m-fit

We fit the data with respect to quark mass for a fixed momentum to the linear function f_{Z_a} .

 $f_{Z_q}(m,a,\tilde{p}) = a_1 + a_2 \cdot am,$

where a_i is a function of \tilde{p} . We call this m-pit. After m-fit, we take the chiral limit values which corresponds to $a_1(a, \tilde{p})$.

a ₁	a ₂
0.76016(15)	-0.0049(21)
χ^2/dof	
0.0024(62)	

・ロン ・回 と ・ ヨン・

Jangho Kim (Seoul National University)

p-fit

We fit $a_1(a, \tilde{p})$ to the following fitting function.

$$f_{Z_q}(am = 0, a\tilde{p}) = b_1 + b_2(a\tilde{p})^2 + b_3((a\tilde{p})^2)^2 + b_4((a\tilde{p})^2)^3$$

To avoid non-perturbative effects at small $(a\tilde{p})^2$, we choose the momentum window as $(a\tilde{p})^2 > 1$. Because we assume that those terms of $\mathcal{O}((a\tilde{p})^2)$ and higher order are pure lattice artifacts, we take the b_1 as Z_q at $\mu = 2$ GeV in the RI-MOM scheme.

b_1	<i>b</i> ₂
1.0764(44)	-0.1908(69)
<i>b</i> ₃	<i>b</i> ₄
0.0279(33)	-0.00350(49)
χ^2/dof	
0.06(16)	

Jangho Kim (Seoul National University)

Mass Renormalization Factor

By the Ward identity, the mass renormalization factor is

$$Z_m = \frac{1}{Z_{S\otimes S}}$$

where $Z_{S\otimes S}$ is a renormalization factor of scalar bilinear operator with scalar taste. Therefore

$$(Z_q \cdot Z_m)^{\text{RI-MOM}} = (\frac{Z_q}{Z_{S \otimes S}})^{\text{RI-MOM}} = \Gamma_{S \otimes S}(\tilde{p}, \tilde{p}),$$

where $Z_{S\otimes S} \equiv Z_O^{\alpha\beta}$ with $\alpha = \beta = (S \otimes S)$ and $\Gamma_{S\otimes S} \equiv \Gamma_B^{\alpha\beta}$ with $\alpha = \beta = (S \otimes S)$.

イロト イヨト イヨト イヨト

RI-MOM scheme to SI scheme

To obtain the scale-invariant(SI) quantity, we divide $(Z_q \cdot Z_m)^{\text{RI-MOM}}$ by the RG running factor.

$$(Z_q \cdot Z_m)^{\mathsf{SI}} = \frac{c(\alpha_s(\mu_0))}{c(\alpha_s(\mu))} \cdot \frac{d(\alpha_s(\mu_0))}{d(\alpha_s(\mu))} (Z_q \cdot Z_m)^{\mathsf{RI}-\mathsf{MOM}}(\mu)$$
$$(\mu_0 = 2\mathsf{GeV}, \quad \mu^2 = \tilde{p}^2)$$

where d(x) is the Wilson coefficient calculated using the quark mass anomalous dimension at the four-loop level.

m-fit

We use the following fitting function:

$$f_{Z_q \cdot Z_m}(m, a, \tilde{p}) = c_1 + c_2(am) + c_3(am)^2 + c_4 \frac{1}{(am)^2}$$

where *m* is the valence quark mass. the c_4 term comes from the chiral behavior of the chiral condensate which is proportional to $1/m^2$ due to zero mode. Because of the sea quark determinant contributions to the chiral condensate, the c_4 term contribution vanishes in the chiral limit. After m-fit, we take the chiral limit values which corresponds to c_1 .

<i>C</i> ₁	<i>c</i> ₂
1.4036(22)	-0.573(72)
<i>C</i> ₃	<i>C</i> ₄
0.28(67)	0.00000150(26)
χ^2/dof	
0.00008(51)	

A D > A P > A B > A

Jangho Kim (Seoul National University)

p-fit

We fit the $c_1(a, \tilde{p})$ to the following fitting function.

$$f_{Z_q\cdot Z_m}(am=0,a ilde{
ho})=d_1+d_2(a ilde{
ho})^2+d_3((a ilde{
ho})^2)^2$$

d_1	<i>d</i> ₂
1.342(16)	0.041(12)
<i>d</i> ₃	$\chi^2/{ m dof}$
-0.0060(21)	0.18(28)

・ロト ・回ト ・ヨト ・

Preliminary Result

α	Z_q	χ^2/dof (m-fit)	χ^2/dof (p-fit)
$(V_{\mu}\otimes S)$	1.0764(44)	0.0024(62)	0.06(16)
$(A_{\mu}\otimes P)$	1.075(32)	0.0003(27)	0.12(28)
α	Z _m	χ^2/dof (m-fit)	χ^2/dof (p-fit)
$(S \otimes S)$	1.246(15)	0.00008(51)	0.18(28)
$(P \otimes P)$	1.255(18)	0.000008(36)	0.06(19)
α	$Z_{O}^{\alpha\alpha}$	$\chi^2/{ m dof}~({ m m-fit})$	χ^2/dof (p-fit)
$[S \times P]$	1.079(18)	0.00004(23)	0.19(48)
$[P imes A_{\mu}]$	0.8947(66)) 0.00218(25)	0.032(74)
$[V_{\mu} imes V_{\mu}]$	0.982(11)	0.000003(17)	0.17(40)
$[A_{\mu} imes A_{ u}]$	1.115(27)	0.0000006(33)	0.007(47)
$[T_{\mu u} imes T_{ ho\sigma}]$	1.293(16)	0.0000035(72)	0.008(42)
:	:	:	:

イロン イロン イヨン イヨン

Conclusion

- We obtain the wave function renormalization factor Z_q from conserved vector and axial current and mass renormalization factor Z_m from scalar and pseudo-scalar bilinear operators.
- Also we calculate the renormalization factor of other bilinear operators.
- We are in the middle of analysis of systematic errors.

(日) (同) (日) (日)