Non-perturbative Renormalization of Bilinear Operators with Staggered Fermions

Jangho Kim, Jongjeong Kim, Weonjong Lee, Boram Yoon

Seoul National University
The 3rd KIAS Workshop
on Particle Physics and Cosmology

Introduction

- We present matching factors for the bilinear operators obtained using the non-perturbative renormalization method (NPR) for improved staggered fermions on the MILC asqtad lattices $\left(N_{f}=2+1\right)$.
- We obtain the wave function renormalization factor Z_{q} from the conserved vector and axial currents. Also we obtain the mass renormalization factor Z_{m} from scalar and pseudo-scalar bilinear operators.
- We also calculate the renormalization factor of other bilinear operators.

Bilinear Operator Renormalization

- \tilde{p} is the momentum in reduced Brillouin zone.

$$
p \in\left(-\frac{\pi}{a}, \frac{\pi}{a}\right]^{4}, \quad \tilde{p} \in\left(-\frac{\pi}{2 a}, \frac{\pi}{2 a}\right]^{4}, \quad p=\tilde{p}+\pi_{B}
$$

where $\pi_{B}\left(\equiv \frac{\pi}{a} B\right)$ is cut-off momentum in hypercube.

- a : lattice spacing.
- B : vector in hypercube. Each element is 0 or 1
ex) $B=(0,0,1,1)$

Figure: The Green's functions of bilinear operator: The diagrams that contribute to bilinear operator

Unamputated Green's function \widetilde{H}^{α}

Amputated Green's function

Red Circle : 1PI Diagram.

Amputated Green's function

- α, β : the indices to represent different operators. ex) $\alpha=\left(\gamma_{\mu} \otimes 1\right), \beta=(1 \otimes 1)$
- M.C. : momentum conservation condition. $\tilde{p}=\tilde{q}+\tilde{k}$

The projection operator is

$$
\hat{\mathbb{P}}_{B A ; c_{2} c_{1}}^{\beta}=\frac{1}{48} \overline{\overline{\left(\gamma_{S^{\prime}}^{\dagger} \otimes \xi_{F^{\prime}}^{\dagger}\right)}}{ }_{B A} \delta_{c_{2} c_{1}}
$$

The renormalization of $\Gamma(\tilde{p}, \tilde{q})$ is

$$
\Gamma_{R}^{\alpha \sigma}(\tilde{p}, \tilde{q})=\sum_{\beta} Z_{q}^{-1} Z_{O}^{\alpha \beta} \Gamma_{B}^{\beta \sigma}(\tilde{p}, \tilde{q})
$$

- A, B : hypercube index
- c : color index
- α, β, σ : the indices to represent different operators.
- Γ_{B} : bare projected amputated Green's function
- Γ_{R} : renormalized projected amputated Green's function
- Z_{q} : the wave function renormalization factor for quark fields
- $Z_{O}^{\alpha \beta}$: the renormalization factor matrix element which represents the mixing between the α and β operators.

The RI-MOM scheme prescription is

$$
\Gamma_{R}^{\alpha \sigma}(\tilde{p}, \tilde{p})=\Gamma_{\text {tree }}^{\alpha \sigma}(\tilde{p}, \tilde{p})=\delta^{\alpha \sigma},
$$

where $\Gamma_{\text {tree }}^{\alpha \sigma}(\tilde{p}, \tilde{p})$ is the projected amputated Green's function at the tree level.
Therefore, the renormalization factor is obtained from the following equation.

$$
Z_{O}^{\alpha \beta}=Z_{q} \cdot\left[\Gamma_{B}^{-1}(\tilde{p}, \tilde{p})\right]^{\alpha \beta}
$$

Simulation Detail

- $20^{3} \times 64$ MILC asqtad lattice $\left(a \approx 0.12 f m, a m_{\ell} / a m_{s}=0.01 / 0.05\right)$.
- HYP smeared staggered fermions as valence quarks.
- The number of configurations is 30 .
- 5 valence quark masses ($0.01,0.02,0.03,0.04,0.05$)
- 14 external momenta in the units of $\left(\frac{2 \pi}{L_{s}}, \frac{2 \pi}{L_{s}}, \frac{2 \pi}{L_{s}}, \frac{2 \pi}{L_{t}}\right)$.
- We do the uncorrelated fitting and use the jackknife resampling method to estimate statistical errors.

$\mathrm{n}(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t})$	$a \tilde{p}$	GeV	$\mathrm{n}(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t})$	$a \tilde{p}$	GeV
$(1,0,1,3)$	0.5330	0.8835	$(1,2,2,4)$	1.0210	1.6922
$(1,1,1,2)$	0.5785	0.9588	$(2,1,2,6)$	1.1114	1.8420
$(1,1,1,3)$	0.6187	1.0254	$(2,2,2,7)$	1.2871	2.1332
$(1,1,1,4)$	0.6710	1.1122	$(2,2,2,8)$	1.3421	2.2243
$(1,1,1,5)$	0.7328	1.2146	$(2,2,2,9)$	1.4018	2.3233
$(1,1,1,6)$	0.8019	1.3291	$(2,3,2,7)$	1.4663	2.4302
$(1,2,1,5)$	0.9128	1.5128	$(3,3,3,9)$	1.8562	3.0764

Wave Function Renormalization Factor

For the conserved vector current, the renormalization factor $Z_{O}^{\alpha \beta}=1$.
Therefore

$$
Z_{q}^{\mathrm{RI}-\mathrm{MOM}}=\Gamma_{0}^{\alpha \beta}(\tilde{p}, \tilde{p}),
$$

where $\alpha=\beta=\left(\gamma_{\mu} \otimes 1\right)$.
The superscript RI-MOM denotes that the wave function renormalization factor Z_{q} is defined in the RI-MOM scheme.

RI-MOM scheme to SI scheme

We convert the raw data in the RI-MOM scheme into the scale-invariant(SI) data by removing the scale-dependent part of the RG evolution matrix as follows.

$$
Z_{q}^{\mathrm{SI}}=\frac{c\left(\alpha_{s}\left(\mu_{0}\right)\right)}{c\left(\alpha_{s}(\mu)\right)} Z_{q}^{\mathrm{RI}-\mathrm{MOM}}(\mu), \quad\left(\mu_{0}=2 \mathrm{GeV}, \quad \mu^{2}=\tilde{p}^{2}\right)
$$

This Wilson coefficient $c(x)$ is calculated using four-loop anomalous dimension.

m-fit

We fit the data with respect to quark mass for a fixed momentum to the linear function $f_{Z_{q}}$.

$$
f_{Z_{q}}(m, a, \tilde{p})=a_{1}+a_{2} \cdot a m
$$

where a_{i} is a function of \widetilde{p}. We call this m-pit. After m-fit, we take the chiral limit values which corresponds to $a_{1}(a, \tilde{p})$.

a_{1}	a_{2}
$0.76016(15)$	$-0.0049(21)$
$\chi^{2} /$ dof	
$0.0024(62)$	

p-fit

We fit $a_{1}(a, \widetilde{p})$ to the following fitting function.

$$
f_{Z_{q}}(a m=0, a \tilde{p})=b_{1}+b_{2}(a \tilde{p})^{2}+b_{3}\left((a \tilde{p})^{2}\right)^{2}+b_{4}\left((a \tilde{p})^{2}\right)^{3}
$$

To avoid non-perturbative effects at small $(a \tilde{p})^{2}$, we choose the momentum window as $(a \tilde{p})^{2}>1$. Because we assume that those terms of $\mathcal{O}\left((a \widetilde{p})^{2}\right)$ and higher order are pure lattice artifacts, we take the b_{1} as Z_{q} at $\mu=2 \mathrm{GeV}$ in the RI-MOM scheme.

b_{1}	b_{2}
$1.0764(44)$	$-0.1908(69)$
b_{3}	b_{4}
$0.0279(33)$	$-0.00350(49)$
$\chi^{2} /$ dof	
$0.06(16)$	

Mass Renormalization Factor

By the Ward identity, the mass renormalization factor is

$$
Z_{m}=\frac{1}{Z_{S \otimes S}}
$$

where $Z_{S \otimes S}$ is a renormalization factor of scalar bilinear operator with scalar taste. Therefore

$$
\left(Z_{q} \cdot Z_{m}\right)^{\mathrm{Rl}-\mathrm{MOM}}=\left(\frac{Z_{q}}{Z_{S \otimes S}}\right)^{\mathrm{Rl-MOM}}=\Gamma_{S \otimes S}(\tilde{p}, \tilde{p}),
$$

where $Z_{S \otimes S} \equiv Z_{O}^{\alpha \beta}$ with $\alpha=\beta=(S \otimes S)$ and $\Gamma_{S \otimes S} \equiv \Gamma_{B}^{\alpha \beta}$ with $\alpha=\beta=(S \otimes S)$.

RI-MOM scheme to SI scheme

To obtain the scale-invariant(SI) quantity, we divide $\left(Z_{q} \cdot Z_{m}\right)^{\mathrm{Rl}-\mathrm{MOM}}$ by the RG running factor.

$$
\begin{array}{r}
\left(Z_{q} \cdot Z_{m}\right)^{\mathrm{SI}}=\frac{c\left(\alpha_{s}\left(\mu_{0}\right)\right)}{c\left(\alpha_{s}(\mu)\right)} \cdot \frac{d\left(\alpha_{s}\left(\mu_{0}\right)\right)}{d\left(\alpha_{s}(\mu)\right)}\left(Z_{q} \cdot Z_{m}\right)^{\mathrm{RI}-\text { MOM }}(\mu) \\
\left(\mu_{0}=2 \mathrm{GeV}, \quad \mu^{2}=\tilde{p}^{2}\right)
\end{array}
$$

where $d(x)$ is the Wilson coefficient calculated using the quark mass anomalous dimension at the four-loop level.

m-fit

We use the following fitting function:

$$
f_{Z_{q} \cdot Z_{m}}(m, a, \tilde{p})=c_{1}+c_{2}(a m)+c_{3}(a m)^{2}+c_{4} \frac{1}{(a m)^{2}},
$$

where m is the valence quark mass. the c_{4} term comes from the chiral behavior of the chiral condensate which is proportional to $1 / m^{2}$ due to zero mode. Because of the sea quark determinant contributions to the chiral condensate, the c_{4} term contribution vanishes in the chiral limit. After m-fit, we take the chiral limit values which corresponds to c_{1}.

c_{1}	c_{2}
$1.4036(22)$	$-0.573(72)$
c_{3}	c_{4}
$0.28(67)$	$0.00000150(26)$
$\chi^{2} /$ dof	
$0.00008(51)$	

p-fit

We fit the $c_{1}(a, \tilde{p})$ to the following fitting function.

$$
f_{Z_{q}} \cdot Z_{m}(a m=0, a \tilde{p})=d_{1}+d_{2}(a \tilde{p})^{2}+d_{3}\left((a \tilde{p})^{2}\right)^{2}
$$

d_{1}	d_{2}
$1.342(16)$	$0.041(12)$
d_{3}	$\chi^{2} /$ dof
$-0.0060(21)$	$0.18(28)$

Preliminary Result

α	Z_{q}	$\chi^{2} /$ dof $(\mathrm{m}-$ fit $)$	$\chi^{2} /$ dof $(\mathrm{p}-\mathrm{fit})$
$\left(V_{\mu} \otimes S\right)$	$1.0764(44)$	$0.0024(62)$	$0.06(16)$
$\left(A_{\mu} \otimes P\right)$	$1.075(32)$	$0.0003(27)$	$0.12(28)$

α	Z_{m}	$\chi^{2} /$ dof (m-fit)	$\chi^{2} /$ dof (p-fit)
$(S \otimes S)$	$1.246(15)$	$0.00008(51)$	$0.18(28)$
$(P \otimes P)$	$1.255(18)$	$0.0000008(36)$	$0.06(19)$

α	$Z_{O}^{\alpha \alpha}$	$\chi^{2} / \mathrm{dof}(\mathrm{m}$-fit)	$\chi^{2} / \mathrm{dof}(\mathrm{p}$-fit $)$
$[S \times P]$	$1.079(18)$	$0.00004(23)$	$0.19(48)$
$\left[P \times A_{\mu}\right]$	$0.8947(66)$	$0.00218(25)$	$0.032(74)$
$\left[V_{\mu} \times V_{\mu}\right]$	$0.982(11)$	$0.000003(17)$	$0.17(40)$
$\left[A_{\mu} \times A_{\nu}\right]$	$1.115(27)$	$0.0000006(33)$	$0.007(47)$
$\left[T_{\mu \nu} \times T_{\rho \sigma}\right]$	$1.293(16)$	$0.0000035(72)$	$0.008(42)$
\vdots	\vdots	\vdots	\vdots

Conclusion

- We obtain the wave function renormalization factor Z_{q} from conserved vector and axial current and mass renormalization factor Z_{m} from scalar and pseudo-scalar bilinear operators.
- Also we calculate the renormalization factor of other bilinear operators.
- We are in the middle of analysis of systematic errors.

