Flavor and CP Violations – as Probes of BSM Physics (i.e., SUSY, in this talk) –

Takeo Moroi (Tokyo)

KIAS, Korea, November, 2013

1. Introduction

Supersymmetry: good & bad

• Gauge coupling unification can be realized

- Dark matter candidate exists (neutralino, gravitino, ...)
- SUSY particles have not been discovered yet

 \Rightarrow For e.g., $m_{\tilde{q}} \gtrsim 1.8$ TeV & $m_{\tilde{g}} \gtrsim 1.4$ TeV in mSUGRA

• $m_h \simeq 125 - 126$ GeV looks heavier than naive expectation

One possibility: Heavy sfermions: $m_{\tilde{f}} \sim O(10 \text{ TeV})$

• Focus-point

[Feng, Matchev & TM ('99)]

• (Some class of) anomaly-mediation

[Giudice, Luty, Murayama & Rattazzi ('99)]

• Split SUSY

[Giudice & Romanino ('04); Arkani-Hamed, Dimopoulos ('04); Wells ('04)]

• Minimal gravity mediation

[Ibe, TM & Yanagida ('06); Ibe & Yanagida ('11)]

• • • •

LHC may not find the SUSY signals in heavy SUSY scenario

 \Rightarrow Flavor and CP physics may be useful

Today, I will talk about:

- Flavor and CP violations in SUSY model
- Issues related to muon g 2 (if I have time)

<u>Outline</u>

- 1. Introduction
- 2. K^0 - \bar{K}^0 Mixing
- 3. Leptonic Flavor and CP Violations
- 4. Muon Magnetic Dipole Moment
- 5. Summary

2. K^0 - \overline{K}^0 Mixing

 K^0 - \bar{K}^0 system: CP and Hamiltonian eigenstates differ

•
$$|K_L\rangle \simeq |K_{CP=-}\rangle - \epsilon_K |K_{CP=+}\rangle$$

•
$$|K_S\rangle \simeq |K_{CP=+}\rangle + \epsilon_K |K_{CP=-}\rangle$$

$$CP|K^0\rangle = |\bar{K}^0\rangle \implies |K_{CP=\pm}\rangle = \frac{1}{\sqrt{2}}(|K^0\rangle \pm |\bar{K}^0\rangle)$$

Hamiltonian and ϵ_K parameter

$$\begin{aligned} \mathcal{H}_{K} &= \begin{pmatrix} \langle K^{0} | \hat{\mathcal{H}} | K^{0} \rangle \ \langle K^{0} | \hat{\mathcal{H}} | \bar{K}^{0} \rangle \\ \langle \bar{K}^{0} | \hat{\mathcal{H}} | K^{0} \rangle \ \langle \bar{K}^{0} | \hat{\mathcal{H}} | \bar{K}^{0} \rangle \end{pmatrix} = \begin{pmatrix} M_{11} + \frac{i}{2} \Gamma_{11} & M_{12} + \frac{i}{2} \Gamma_{12} \\ M_{12}^{*} + \frac{i}{2} \Gamma_{12}^{*} & M_{11} + \frac{i}{2} \Gamma_{11} \end{pmatrix} \end{aligned}$$

We take Wu-Yang phase convention: $\langle (2\pi)_{I=0} | K_{CP=-} \rangle = 0$
 $\Rightarrow \epsilon_{K} \simeq \frac{i}{2} \frac{\Im M_{12} - i \Im \Gamma_{12}/2}{\Re M_{12} - i \Re \Gamma_{12}/2}$
 $\Rightarrow CP$ violation, if $\Im M_{12} \neq 0$ or $\Im \Gamma_{12} \neq 0$

In the SM, K^0 - \bar{K}^0 mixing originates from W^{\pm} -boson loop

[CKMfitter ('13)]

- $|\epsilon_K^{(\exp)}| = (2.228 \pm 0.011) \times 10^{-3}$
- $|\epsilon_K^{(\exp)}| |\epsilon_K^{(SM)}| = (3.8 \pm 2.7) \times 10^{-4} \implies |\epsilon_K^{(extra)}| < 9.2 \times 10^{-4} (2\sigma)$

In SUSY model, new sources of flavor and CP violations exist

 \Rightarrow Off-diagonal elements of sfermion mass matrices

$$\mathcal{M}_{\tilde{Q}}^{2} = m_{\tilde{q}}^{2} \begin{pmatrix} \Delta_{\tilde{Q},11} & \Delta_{\tilde{Q},12} & \Delta_{\tilde{Q},13} \\ \Delta_{\tilde{Q},21} & \Delta_{\tilde{Q},22} & \Delta_{\tilde{Q},23} \\ \Delta_{\tilde{Q},31} & \Delta_{\tilde{Q},32} & \Delta_{\tilde{Q},33} \end{pmatrix} \qquad \tilde{Q} = \tilde{u}_{L}, \tilde{u}_{R}^{c*}, \tilde{d}_{L}, \tilde{d}_{R}^{c*}$$
$$\mathcal{M}_{\tilde{L}}^{2} = m_{\tilde{l}}^{2} \begin{pmatrix} \Delta_{\tilde{L},11} & \Delta_{\tilde{L},12} & \Delta_{\tilde{L},13} \\ \Delta_{\tilde{L},21} & \Delta_{\tilde{L},22} & \Delta_{\tilde{L},23} \\ \Delta_{\tilde{L},31} & \Delta_{\tilde{L},32} & \Delta_{\tilde{L},33} \end{pmatrix} \qquad \tilde{L} = \tilde{e}_{L}, \tilde{e}_{R}^{c*}, \tilde{\nu}_{L}$$

Mass terms: $\mathcal{L}_{\text{mass}} = -[\mathcal{M}_{\tilde{d}_L}^2]_{ij}\tilde{d}_{L,i}^*\tilde{d}_{L,j} - [\mathcal{M}_{\tilde{d}_R^c}^2]_{ij}\tilde{d}_{R,i}^c\tilde{d}_{R,j}^{c*} - \cdots$

Diagrams contributing to $\epsilon_K \& \Delta m_K$

 \Rightarrow Important parameters: $\Delta_{\tilde{d}_L,12}$ & $\Delta_{\tilde{d}_R,12}$

 $K-\bar{K}$ mixing gives serious constraints on the MSSM

⇒ It often requires $m_{SUSY} \gtrsim O(100 \text{ TeV})$, if off-diagonal elements of the squark mass matrices are sizable [Gabbiani, Gabrielli, Masiero & Silvestrini ('96)]

Numerical result

• $M_3 = m_{\tilde{q}}$

•
$$\Delta_{\tilde{d},12} = 0.1$$

• Arg $(\Delta_{\tilde{d}_L,12}\Delta_{\tilde{d}_R,12}) = \pi/2$

 $\Rightarrow \epsilon_K$ often gives a serious constraint on the MSSM

 \Rightarrow Constraints from Δm_K and Δm_B are less stringent (assuming maximal CP violation)

$\epsilon_{\boldsymbol{K}}^{(\mathrm{SUSY})}$ may be suppressed, if

- mSUGRA, gauge mediation, ···
- Alignment (flavor symmetry, accidental, ···)
- SO(10)-like relation: $\mathcal{M}^2_{\tilde{d}_L} \simeq \mathcal{M}^{2 *}_{\tilde{d}_R} \Rightarrow \Delta_{\tilde{d}_L} \simeq \Delta^*_{\tilde{d}_R}$ [TM & Nagai ('13)]

If $\mathcal{M}^2_{\tilde{d}_L} \simeq \mathcal{M}^{2 *}_{\tilde{d}_R}$, sum of the following diagrams becomes real

Lagrangian (the most important part):

$$\mathcal{L} = -i\sqrt{2}g_3(\tilde{d}_L^{\dagger}T^a d_L)\tilde{G}^a + i\sqrt{2}g_3(\tilde{d}_R^c T^a \bar{d}_R^c)\bar{\tilde{G}}^a \\ + \tilde{d}_{L,I}^{\dagger}\mathcal{M}_{\tilde{d}_L,IJ}^2\tilde{d}_{L,J} + \tilde{d}_{R,I}^c\mathcal{M}_{\tilde{d}_R,IJ}^2\tilde{d}_{R,J}^{c\dagger} + \cdots$$

If $\mathcal{M}^2_{\tilde{d}_L} = \mathcal{M}^{2 *}_{\tilde{d}_R}$, *C* invariance approximately holds

- $\tilde{d}_L \leftrightarrow \tilde{d}_R^c$
- $d_L \leftrightarrow d_R^c$

 ϵ_K is suppressed due to this (approximate) C invariance

 $\Rightarrow \epsilon_K \neq 0$, due to:

- Violation of $\mathcal{M}^2_{\tilde{d}_L} = \mathcal{M}^{2 \ *}_{\tilde{d}_R}$
- $SU(2)_L$ and $U(1)_Y$ interactions

The relation $\mathcal{M}_{\tilde{d}_L}^2 = \mathcal{M}_{\tilde{d}_R}^2 *$ is affected by RG effects Effects of third-generation Yukawas may be important

Case with (almost) universal scalar mass at the GUT scale

$$\Rightarrow \mathcal{M}_{\tilde{d}_{L}}^{2} \sim m_{\tilde{q}}^{2} \begin{pmatrix} 1 & \Delta_{12} & \Delta_{13} \\ \Delta_{21} & 1 & \Delta_{23} \\ \Delta_{31} & \Delta_{32} & \Delta_{33}^{L} \end{pmatrix}, \quad \mathcal{M}_{\tilde{d}_{R}}^{2} \sim m_{\tilde{q}}^{2} \begin{pmatrix} 1 & \Delta_{12}^{*} & \Delta_{13}^{*} \\ \Delta_{21}^{*} & 1 & \Delta_{23}^{*} \\ \Delta_{31}^{*} & \Delta_{32}^{*} & \Delta_{33}^{L} \end{pmatrix}$$

 \Rightarrow Breaking of the SO(10)-like relation at the MSSM scale

$\tan\beta$	Δ^L_{33}	Δ^R_{33}	
10	0.7	1.0	$ \Lambda L, R(CUT)$ 1
30	0.7	0.8	$\Delta_{33} (\text{GOT}) = 1$
50	0.5	0.5	

- \Rightarrow Constraint from ϵ_K may be relaxed
- \Rightarrow Other observables are also important (like LFV)

3. Leptonic Flavor and CP Violations

LFVs in SUSY models: (probably) due to $\Delta_{\tilde{l}_L}$ and $\Delta_{\tilde{l}_R}$

$$\mathcal{M}_{\tilde{l}_{L,R}}^2 = m_{\tilde{l}_{L,R}}^2 \begin{pmatrix} \Delta_{\tilde{l}_{L,R},11} & \Delta_{\tilde{l}_{L,R},12} & \Delta_{\tilde{l}_{L,R},13} \\ \Delta_{\tilde{l}_{L,R},21} & \Delta_{\tilde{l}_{L,R},22} & \Delta_{\tilde{l}_{L,R},23} \\ \Delta_{\tilde{l}_{L,R},31} & \Delta_{\tilde{l}_{L,R},32} & \Delta_{\tilde{l}_{L,R},33} \end{pmatrix}$$

Off-diagonal elements of the mass matrices induce LFVs

In the MSSM, LFV processes are enhanced by $\tan\beta$

 \Rightarrow LFV rates are (approximately) proportional to $\tan^2\beta$

$$\mu \rightarrow e\gamma$$
 (with $\Delta^L_{e\mu} = \Delta^R_{e\mu} = 0.1$, $\tan\beta = 50$, \cdots)

- MEG (current bound): $Br < 5.7 \times 10^{-13}$ [MEG experiment ('13)]
- MEG upgrade: $Br \lesssim 6 \times 10^{-14}$

Of course, other LFV processes may occur

• $\mu \rightarrow 3e$

- Current bound: $Br < 1 \times 10^{-12}$
- Mu3e (Phase I): $Br \lesssim 10^{-15}$
- Mu3e (Phase II): $Br \lesssim 10^{-16}$
- μ -e conversion
 - Current bound: $R_{\mu e} < 7 \times 10^{-13}$ (with Au)
 - Mu2e: $R_{\mu e} \lesssim 6 \times 10^{-17}$ (with AI)
 - COMET: $R_{\mu e} \lesssim 10^{-17}$ (with AI)
 - PRISM: $R_{\mu e} \lesssim 10^{-19}$

In the case of dipole dominance:

•
$$\mu \to 3e$$
: $Br(\mu \to 3e) \simeq 7 \times 10^{-3} \times Br(\mu \to e\gamma)$

• μ -e conversion: $R_{\mu e} \sim$ (a few) $\times 10^{-3} \times Br(\mu \rightarrow e\gamma)$

Comparison (with the naive rescalings)

Another possible probe of heavy SUSY scenario

Electric dipole moments (EDMs)

Electron EDM, for example

• $\mu \tan \beta$ can be complex

 $\Rightarrow d_e^{(SUSY)}$ is approximately proportional to $\Im(\mu \tan \beta)$

• Phases in the sfermion mass matrices may also contribute

Numerical result with $\mu = m_{\tilde{l}} \& \arg(\mu) = \pi/2$:

• Current bound

 $|d_e| < 8.7 \times 10^{-29} e \text{ cm}$ [ACME collaboration ('13)]

[TM & Nagai ('13)]

 \Rightarrow Electron EDM covers the sfermion mass of $\sim 100~{\rm TeV}$

EDMs of hadrons

Gray region: Constraint on CEDMs (Hg) $(|\tilde{d}_u - \tilde{d}_d| < 5.75 \times 10^{-27} \text{ cm})$

[McKeen, Pospelov & Ritz ('13)]

4. Muon Magnetic Dipole Moment

Muon Magnetic Dipole Moment

$$\mathcal{L}_{\text{MDM}} = \frac{e}{4m_{\mu}} a_{\mu} \bar{\mu} \sigma_{\alpha\beta} \mu F^{\alpha\beta} \to \frac{e}{m_{\mu}} a_{\mu} \vec{S} \vec{B} \qquad a_{\mu} = \frac{1}{2} (g_{\mu} - 2)$$

•
$$a_{\mu}^{(\exp)} = (11\ 659\ 208.9 \pm 6.3) \times 10^{-10}$$

• $a_{\mu}^{(SM)} = (11\ 659\ 182.8 \pm 5.0) \times 10^{-10}$
• $a_{\mu}^{(\exp)} - a_{\mu}^{(SM)} = (26.1 \pm 8.0) \times 10^{-10}$
 $\Rightarrow \sim 3-\sigma$ discrepancy

[Hagiwara, Liao, Martin, Nomura & Teubner]

SUSY contribution may be the origin of muon g-2 anomaly

A possibility: Heavy colored / light non-colored superparticles [Ibe, Matsumoto, Yanagida & Yokozaki ('13); Akula & Nath ('13)]

- Sleptons (and Bino or Wino) should be relatively light to realize $a_{\mu}^{\rm (SUSY)}\sim 2.6\times 10^{-9}$
- Colored superparticles can be heavy enough to avoid LHC constraints

 $a_{\mu}^{(\rm SUSY)}$: SUSY contribution to muon MDM

• Left: $m_{\tilde{\mu}_L} = m_{\tilde{\mu}_R} = \mu = M_1 = M_2$

• Right: $m_{\tilde{\mu}_L} = m_{\tilde{\mu}_R} = M_1$, $\mu = 1$ TeV, $M_2 =$ large

Interesting possibility:

Reconstructing the SUSY contribution to a_{μ} at ILC

ILC (International e^+e^- linear collider)

- $E_{\rm CM} = 250 500$ GeV (or maybe up to ~ 1 TeV)
- $\mathcal{L}\gtrsim 500~{\rm fb}^{-1}$
- Polarized e^- and e^+ beams will be available
- Precise study of the sleptons is possible (if produced)

Parameters necessary to reconstruct $a_{\mu}^{(SUSY)}$ may be measured

- Masses of superparticles
- Coupling and mixing parameters

Case with Bino-diagram dominance

Strategy (case with Bino-diagram dominance)

- Masses of superparticles in the loop can be measured by endpoint and/or threshold analysis
- Left-right mixing may be determined by studying $\tilde{\tau}$ (if A-parameters are negligible)
- Coupling parameters may be determined from selectron production cross section

Reconstruction on our sample point (with $\mathcal{L} \sim 500 \text{ fb}^{-1}$) [Endo, Hamaguchi, Iwamoto, Kitahara & TM]

X	Input	δΧ	$\delta_X a_\mu^{(\tilde{B})}$	Process
$\mu \tan \beta$	6100 GeV	12%	13%	$e^+e^- \rightarrow \tilde{\tau}^+\tilde{\tau}^-$
$m_{ ilde{\mu}1}$	126 GeV	$200\mathrm{MeV}$	0.3%	$e^+e^- \rightarrow \tilde{\mu}^+\tilde{\mu}^-$
$m_{ ilde{\mu}2}$	200 GeV	$200\mathrm{MeV}$	0.3%	$e^+e^- \rightarrow \tilde{\mu}^+\tilde{\mu}^-$
$m_{ ilde{\chi}_1^0}$	90 GeV	$100\mathrm{MeV}$	< 0.1%	$e^+e^- \rightarrow \tilde{\mu}^+\tilde{\mu}^-/\tilde{e}^+\tilde{e}^-$
${ ilde g}_{1,L}^{({\sf eff})}$		a few $\%$	a few $\%$	$e^+e^- \rightarrow \tilde{e}_L^+ \tilde{e}_R^-$
${\widetilde g}_{1,R}^{({\rm eff})}$		1 %	0.9%	$e^+e^- \rightarrow \tilde{e}^+_R \tilde{e}^R$
$a_{\mu}^{(\mathrm{SUSY})}$	2.6×10^{-9}	13%		

 \Rightarrow Error in the reconstruction of $a_{\mu}^{\rm (SUSY)}$

$$\frac{\delta a_{\mu}^{(\tilde{B})}}{a_{\mu}^{(\tilde{B})}} \equiv \frac{1}{a_{\mu}^{(\tilde{B})}} \sqrt{\sum_{X} \left(\frac{\partial a_{\mu}^{(\tilde{B})}}{\partial X} \delta X\right)^2} = 13\%$$

5. Summary

Today, I have discussed that:

- There exist new sources of flavor and CP violations in the MSSM
- We may see a signal of BSM physics in flavor and CP violating processes

- LFVs, like $\mu \to e \gamma$, $\mu \to 3 e$, $\mu \text{-}e$ conversion, etc

- Electron EDM

- Muon g-2 anomaly is still still in controversy
 - The muon g-2 anomaly may be due to SUSY contribution
 - Such a scenario may be tested if ILC will become available

Backups

Flavor violation in the SM:

$$\mathcal{L}_W = \frac{g_2}{\sqrt{2}} (\bar{u}, \bar{c}, \bar{t}) \gamma^{\mu} W^+_{\mu} P_L V_{\mathsf{CKM}} \begin{pmatrix} d \\ s \\ b \end{pmatrix} + \mathsf{h.c.}$$

CKM matrix

$$V_{\mathsf{CKM}} = \left(\begin{array}{ccc} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{array}\right)$$

$$= \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + O(\lambda^4)$$

CKM triangle: $[V_{\mathsf{CKM}}^{\dagger}V_{\mathsf{CKM}}]_{bd} = 0$

⇒ Flavor and CP violation seem to be explained well by the CKM mechanism (so far) Lepton sector: Neutrino oscillation is observed

 \Leftrightarrow In the SM, no leptonic flavor violation ($m_{\nu} = 0$)

Neutrino masses and mixings (a la PDG):

•
$$\Delta m_{\rm solar}^2 = (7.58^{+0.22}_{-0.26}) \times 10^{-5} \text{ eV}^2$$

•
$$\Delta m^2_{\rm atm} = (2.35^{+0.12}_{-0.09}) \times 10^{-3} \ {\rm eV}^2$$

- $\sin^2 \theta_{12} = 0.312^{+0.018}_{-0.015}$
- $\sin^2 \theta_{23} = 0.42^{+0.08}_{-0.03}$
- $\sin^2 2\theta_{13} = 0.096 \pm 0.013$

[Machado, Minakata, Nunokawa & Funchal ('13),

w/ T2K, MINOS, Double Chooz, Daya Bay & RENO]

We have already seen LFVs: Neutrino oscillations

- \Rightarrow How large are the LFV rates in charged sector?
- \Rightarrow For e.g., $Br(\mu \rightarrow e\gamma)|_{SM+\nu} \sim 10^{-55}$ (in SM with massive ν)

 $\Leftrightarrow \text{Current bound: } Br(\mu \to e\gamma) < 5.7 \times 10^{-13}$ [MEG experiment ('13)]

 \Rightarrow No hope to see LFVs in the SM (+ neutrino mass)

Off-diagonal elements may be generated by RG effects

- ⇒ Even if scalar masses are universal at the GUT scale, offdiagonal elements may be generated
- In particular, the right-handed (s)neutrinos are important [Borzumati & Masiero ('86); Hisano, TM, Tobe & Yamaguchi ('95)]

$$\begin{split} \tilde{\mathbf{I}}_{i}^{*} & \to \mathbf{V}_{\mathrm{Ki}}^{*} \quad \mathbf{V}_{\mathrm{Kj}} - \tilde{\mathbf{I}}_{j} \quad \tilde{\mathbf{I}}_{i}^{*} - \mathbf{V}_{\mathrm{Ki}}^{*} \quad \mathbf{V}_{\mathrm{Kj}} - \tilde{\mathbf{I}}_{j} \\ & \to \mathbf{M}_{\tilde{l}_{L},ij}^{2} \simeq -\frac{6m_{0}^{2}}{16\pi^{2}} (y_{\nu}^{\dagger}y_{\nu})_{ij} \ln \frac{M_{\mathrm{GUT}}}{M_{N}} \\ & y_{\nu,Ij} \simeq \frac{\sqrt{2M_{N}m_{\nu_{L},I}}[U_{\mathrm{PMNS}}]_{Ij}}{v\sin\beta} \text{ (when } M_{N,IJ} = M_{N}\delta_{IJ}) \end{split}$$

$Br(\mu \rightarrow e \gamma)$ in SUSY model with right-handed neutrinos

• Universal scalar mass at the GUT scale is assumed

- Dark green: $125 \le m_h \le 127 \text{ GeV}$
- Light green: $124 \le m_h \le 128$ GeV

Muon MDM: Theoretical calculation (1)

 \bullet QED loops: up to α^5

[Aoyama, Hayakawa, Konoshita & Nio ('12)]

 $\Rightarrow a_{\mu}^{(\text{QED})} = (11\ 658\ 471.8951 \pm 0.0080) \times 10^{-10}$

• EW loops: up to 2 loop

[Gnendiger, Stočkinger & Stočkinger-Kim ('13); see also Czarnecki, Marciano & Vainshtein ('03)]

$$\Rightarrow a_{\mu}^{({\rm EW})} = (15.36 \pm 0.10) \times 10^{-10}$$

 $m_h = 125.6 \pm 1.5$ GeV is used

Error: 3-loop contributions & hadronic uncertainties

Muon MDM: Theoretical calculation (2)

• Hadronic contribution: vacuum polarization (LO)

$$\Rightarrow a_{\mu}^{(\rm had, v.p., LO)} = (692.3 \pm 4.2) \times 10^{10}$$

[Davier, Hoecker, Malaescu & Zhang ('11)]

$$\Rightarrow a_{\mu}^{(\rm had, v.p., LO)} = (690.75 \pm 4.72) \times 10^{10}$$

[Jegerlehner & Szafron ('11)]

$$\Rightarrow a_{\mu}^{(\text{had},\text{v.p.,LO})} = (694.91 \pm 4.27) \times 10^{10}$$

[Hagiwara, Liao, Martin, Nomura & Teubner ('11)]

Muon MDM: Theoretical calculation (3)

• Hadronic contribution: vacuum polarization (NLO)

$$\Rightarrow a_{\mu}^{(\rm had, v.p., NLO)} = (-9.84 \pm 0.07) \times 10^{10}$$

[Hagiwara, Liao, Martin, Nomura & Teubner]

• Hadronic contribution: light-by-light

$$\Rightarrow a_{\mu}^{(had,lbl)} = (10.5 \pm 2.6) \times 10^{10}$$
[Prades, Rafael & Vainshtein ('09)]
$$\Rightarrow a_{\mu}^{(had,lbl)} = (11.6 \pm 4.0) \times 10^{10}$$
[Nyffeler ('09)]

Mass determination via the endpoint study

 \Rightarrow Example: $e^+e^- \rightarrow \tilde{\mu}^+\tilde{\mu}^-$, followed by $\tilde{\mu}^\pm \rightarrow \chi_1^0\mu^\pm$

$$\Rightarrow \text{Energy of } \mu^{\pm} \colon E_{\mu}^{(-)} \leq E_{\mu} \leq E_{\mu}^{(+)}$$
$$E_{\mu}^{(\pm)} \equiv \frac{1}{2} E_{\text{beam}} \left[1 - \left(\frac{m_{\chi_{1}^{0}}^{2}}{m_{\tilde{\mu}}^{2}} \right) \right] \left[1 \pm \left(1 - \frac{m_{\tilde{\mu}}^{2}}{E_{\text{beam}}^{2}} \right)^{1/2} \right]$$

 \Rightarrow We obtain the information about smuon and neutralino masses from the endpoints

Result of MC (SPS1a, with $\sqrt{s} = 400$ GeV & $\mathcal{L} = 200$ fb⁻¹):

$$m_{\chi^0_1} = 96.0 \,\, {
m GeV}$$

 $m_{{ ilde \mu}_R} = 143.0 \,\, {
m GeV}$

[Martyn ('04)]

 $\Rightarrow \delta m_{\tilde{\ell}}, \delta m_{\chi_1^0} \lesssim 200 \,\,\mathrm{MeV}$

Left-right mixing may be determined by studying $\tilde{\tau}$

$$\mathcal{M}_{\tilde{\ell}}^2 = \begin{pmatrix} m_{\tilde{\ell}LL}^2 & m_{\ell}(\mu \tan \beta + A_{\ell}) \\ m_{\ell}(\mu \tan \beta + A_{\ell}) & m_{\tilde{\ell}RR}^2 \end{pmatrix}$$
$$= \begin{pmatrix} \cos \theta_{\tilde{\ell}} & \sin \theta_{\tilde{\ell}} \\ -\sin \theta_{\tilde{\ell}} & \cos \theta_{\tilde{\ell}} \end{pmatrix} \begin{pmatrix} m_{\tilde{\ell}_1} & 0 \\ 0 & m_{\tilde{\ell}_2} \end{pmatrix} \begin{pmatrix} \cos \theta_{\tilde{\ell}} & -\sin \theta_{\tilde{\ell}} \\ \sin \theta_{\tilde{\ell}} & \cos \theta_{\tilde{\ell}} \end{pmatrix}$$
$$\Rightarrow m_{\tilde{\ell}LR}^2 \equiv m_{\ell}(\mu \tan \beta + A_{\ell}) = \frac{1}{2}(m_{\tilde{\ell}1}^2 - m_{\tilde{\ell}2}^2) \sin 2\theta_{\tilde{\ell}}$$

Slepton production cross section depends on θ_ℓ

- \Rightarrow Mixing angle in the stau sector can be sizable
- $\Rightarrow \sigma(e^+e^- \to \tilde{\tau}_i \tilde{\tau}_j) \text{ is sensitive to } \theta_{\tilde{\tau}}, \text{ and can be used to determine } \mu \tan \beta \text{ (assuming } A_\ell \ll \mu \tan \beta)$

Gaugino couplings may deviate from the gauge coupling [Hikasa & Nakamura ('96); Nojiri, Fujii & Tsukamoto ('96); Cheng, Feng & Polonsky ('97); Katz, Randall & Su ('98)]

$$\tilde{g}_{Y,L} \simeq g_Y \left[1 + \frac{1}{4\pi} \left(4\alpha_Y \ln \frac{m_{\tilde{q},H}}{m_{\tilde{l}}} - \frac{1}{6} \alpha_Y \ln \frac{m_{\tilde{H}}}{m_{\tilde{l}}} + \frac{9}{4} \alpha_2 \ln \frac{m_{\tilde{W}}}{m_{\tilde{l}}} \right) \right]$$
$$\tilde{g}_{Y,R} \simeq g_Y \left[1 + \frac{1}{4\pi} \left(4\alpha_Y \ln \frac{m_{\tilde{q},H}}{m_{\tilde{l}}} - \frac{1}{6} \alpha_Y \ln \frac{m_{\tilde{H}}}{m_{\tilde{l}}} \right) \right]$$

 $\tilde{g}_{Y,L}$ and $\tilde{g}_{Y,R}$ can be measured using $\sigma(e^+e^- \rightarrow \tilde{e}^+\tilde{e}^-)$

