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Goals

Understanding physics of quark flavor, CP violation

Searches for new physics ~ significant pressure on CKM description
of quark flavor physics
L and |V ..., BaBar excess in R(D™)

— Error in SM BR(K — 7vv) dominated by error in |V |

— 3o differences: |V |

exc incl.?

— Error in SM || dominated by error in |V |
Determinations of |V | and |V, | with greater precision, essential
Experiment ahead of theory

— Errors in hadronic weak matrix elements (theory) often dominate, limit
impact of high-luminosity experiments

— Next generation B: Belle II, BESIII, LHCb
— Kaon experiments: KLOE, ORKA, NA62, KOTO, TREK, Project X

Need calculations with controlled, improvable errors ~ LQCD



Indirect CP violation and |V,

« ~ 3o difference between SM and experimental |g.| ~ |V |* reported by
SWME (Lattice 2012 proc.)

— Exclusive |V | (from B — D*/v at zero recoil), SWME or lattice average By
— Vanishes with inclusive |V |

 Updates of exclusive |V | from B — DOy (FNAL/MILC, Lattice 2013)
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* New exclusive |V | increases difference between SM and experimental |g|



Exclusive and inclusive |V |

3.0c difference: exclusive |V | from B — D*/v and inclusive |V |

New exclusive |V | from only lattice QCD calculations for B — D/v and B
— D*lv including vacuum polarization effects (update supersedes previous)

Cross-checks of systematics ~ lattice QCD calculations with different
discretizations of valence, sea quark actions
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e B — DIiv (FNAL/MILC, Lattice 2013) | ® | 0.0402(20),
m B — D'lv (FNAL/MILC, Lattice 2013) = 0.0390(5),.. ()1

B — D'Iv (FNAL/MILC, PRD 2009) 0.0387(9),,.,(10),,
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Exclusive |V | and new physics

« Next generation intensity-frontier experiments will push experimental
errors in B — D/v and B — D*lv below ~ 1%

* |V, normalizes Unitarity Triangle ~ impact on flavor physics

« Lattice QCD calculations for B — D*/v and B — DI/v with different
systematics, greater precision, vital to search for new physics
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A Inclusive (Gambino and Schwanda, arXiv:1307.4551) —a— 0.042409) ., 11

Inclusive (Amsler et al., PDG 2008) 0.0416(6) . 4,

T T T T S S ST SO E S S R
0.04 0.045 0.05
IV

cb

« FNAL/MILC, RBC/UKQCD, HPQCD preparing next attack on B — DOy



'V, | from B — DO
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u, d

At tree-level in SM, b — c transition via vector, axial currents ~ |V |
Spectator u (d) quark for charged (neutral) B and neutral (charged) D™

Valence quarks immersed in sea of gluons, quark-antiquark vacuum
polarization

Stability under strong interactions ~ gold-plated for lattice QCD



'V, | from B — DO

dTl’ 2 f 2M5
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» Partial decay rates, form factor shapes (nof normalization), from experiment
* D® energy in B rest frame ~ w = v - v
»  Well-known quantities, kinematic factors, higher order electroweak corrections

—  Coulomb attraction in charged D” final state (for neutral D*, 7o — 0)
— Electroweak correction 7y, from NLO box diagrams, y or Z exchanged with I/

- ’I“:MD/MB, ’I“*ZMD*/MB
w+1 S8w(w — 1)r*
_ _ 5 1 —

* Form factors from theory ~ hadronic matrix elements
* CKM matrix element




B —» D®/y form factors

Fo(w) = 140) + (1) - (0)

12(1 = )" x (W) Fp-*(w) = [(w = r")(w + 1)la, () — (w* = 1) (r"ha, (@) + ha, ()]
+ 2(1 = 2wr* +7*?) [(w + 1)%ha, *(w) + (W? = DAy (w)]

2

« Heavy-quark spin-flavor symmetry
Fp(w) = Fp-(w) = &(w), £(1) =1

« B — D*lvat zero recoil
Fp«(1) = ha, (1)

 Theorists must calculate small deviation from 1



B — D®/y hadronic matrix elements

(D(pp)|V*|B(pB)) = (v +vp)*hi(w) + (vB —vp)Ph_(w),

MpMpg
D* «, €)|A*| B . .
Do JATBWE) _ j1om(1 4 w)ha, (@) = (€ - v) (0oha, (@) + vl hoa, (0))]
Mp-Mpg
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« Hadronic matrix elements «— coefficients of exponential
expansions of lattice QCD correlation functions

— Lattice theory interpolating operators for B, D)
— Lattice theory axial, vector currents
e Optimal correlator ratios
— Statistical errors from Monte Carlo integration cancel
— Lattice current renormalization partially cancels

« For B — D*lv at zero recoil, F},.(1) =& ,(1) ~ axial current matrix
element at p,. = p,



B — D™y correlators

VHE AH

u, d

Hadronic matrix elements «— coefficients of exponential
expansions of lattice QCD correlation functions

— Lattice theory interpolating operators for B, D)
— Lattice theory axial, vector currents
Optimal correlator ratios
— Statistical errors from Monte Carlo integration cancel
— Lattice current renormalization partially cancels

For B — D*/v at zero recoil, F,«(1) = &, ,(1) ~ axial current matrix
element at p,. = p,



B — D® program philosophy
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* Maximize precision: Calculate all (six) form factors at non-zero recoil ~
maximize statistics, kinematic overlap with experiments
— Multiple-year FNAL/MILC effort began with low statistics calculation of axial

current matrix element at zero recoil (one form factor); high statistics update
(Lattice 2013) is precision world leader

— Non-zero recoil calculations require vector current matrix elements, suffer
from larger statistical errors, need additional current renormalization factors

— B — D" at non-zero recoil (four form factors) not done ~ FNAL/MILC effort
another first [Laiho and Du]
« Maximize efficiency: Calculate one form factor /2, (for B — D) at zero
recoil with target errors dictated by threshold for pfilenomenological
impact ~ 1%



B — D" at zero recoil

« Calculations of /1 ,,(1) from PRD 2009, Lattice 2013 update [FNAL/MILC]
* Error budgets from PRD 2009 (left) and for Lattice 2013 PRELIMINARY (right)

Error PRD 2009 Lattice 2013
Statistics 1.4% 0.4%
\PT 0.9% 0.6%
R 0.9% 0.3%
Kappa tuning 0.7% 0.2%
Discretization errors 1.5% 1.0%
Current matching 0.3% 0.5%
Tadpole tuning 0.4% —

Isospin breaking — 0.1%
Total 2.6% 1.4%

« “Discretization errors” are (mostly) heavy-quark discretization effects
« Dominant errors are heavy quark errors (1st) and chiral extrapolation (2nd)



Approach

AH
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Clover-improved Wilson bottom, charm with Fermilab interpretation via HQET [El-khadra et
al., PRD 1997; Kronfeld, PRD 2000]

Asqtad-improved staggered light quarks (equal up and down quark masses, no
electromagnetism) [MILC, PRD 1999; Lepage, PRD 1999]

2+1 flavor Asqtad staggered auge ensembles [Weisz, NPB 1983; Curci et al., PLB 1983; Weisz and Wohlert,
NPB 1984; Luscher and Weisz, PLB and CMP 1985; Alford et al., PLB 1995; Bernard et al., PRD 1998]

— Five lattice spacings from 0.15 to 0.045 fm for continuum extrapolation
— Up-down masses from 0.4 to 0.1 of strange mass for chiral extrapolation (to 0.037)

Oktay-Kronfeld action (improved Fermilab action) designed to reduce heavy-quark

discretization errors ~ competitive with HISQ charm, best for bottom [Oktay and Kronfeld, PRD
2008]

2+1+1 flavor HISQ gauge ensembles generated at physical up-down masses [miLc, PRD 2013]



Correlators

D*



Correlator ratio

b Ag, c
B D*
u, d
Fort, .. <<t<<t,.,.. T T, ratio plateau ~ form factor

[FNAL/MILC, PRD 2009, and refs. therein]

CE2D (1, T)CY 2B, T) _ (D"|A},|B)(B| A}, |D")
CE=B(,T)CP =D (t,T) " (BVij|B)(D* [V D)

2

ha (1) N

PAi

p ., ratio of lattice to continuum current renorm. factors [Harada etal., PRD 2002;
F Ar“(L/MILC, PRD 2009]

N
— Very close to one by construction
— Computing deviation separate from generation of correlators

— Perturbation theory applies, numerical suppression of first order
pai =1+ O(as)



Chiral-continuum extrapolation

[Laiho and Van de Water, PRD 2006]

« Staggered chiral perturbation theory through NLO, with NNLO analytic terms

— Build chiral effective field theory for effective continuum action of lattice theory

* Fermilab charm, bottom quarks
+ Staggered up, down, strange quarks in valence and sea

— Light-quark and gluon discretization errors, (staggered) taste symmetry breaking

— Light-quark mass dependence of form factor

Fit to staggered chiral
perturbation theory,
__——"%| extrapolate to continuum
and physical up-down
quark mass

Results from plateau fits
to correlator ratios from
all ensembles

Cusp near physical pion
mass from Dz threshold and
M. - M, = M_; uncertainty
in size dominated by gy

Results from calculations
of p,; for all ensembles




Error budget projections

Error Lattice 2013 1-loop OK tree-level OK
Statistics 0.4% 0.3% 0.3%
\PT. 0pp-x 0.7% 0.3% 0.3%
Kappa tuning 0.2% 0.2% 0.2%
Discretization errors 1.0% 0.2% 0.7%
Current matching 0.5% 0.5% 0.5%
Isospin breaking 0.1% 0.1% 0.1%
Total 1.4% 0.7% 1.0%

Projected discretization errors from power-counting estimates of heavy-quark
errors

“I-loop OK” means mass-dimension five operators in the action, corresponding
operators in the current, are improved at one-loop

“tree-level OK” means tree-level improvement for action, current

Assumptions:

— 8 source times per ensemble, 1000 gauge configurations on existing HISQ ensembles,
additional ensemble with lattice spacing 0.03 fm [MILC, planned for HISQ bottom]

—  Errors from statistics, kappa tuning, ChPT, g,,.. scale with statistics
— 50% of errors from ChPT, g .. eliminated by inclusion of physical-point ensembles



Major tasks

Design B and D" interpolating operators «— presently used operators suffice
Improve current, action «— FNAL/MILC colleagues ~ expert consultants

— Enumerate operators through third-order in HQET

— Match matrix elements at tree-level, one-loop
Develop code

— Inverter (quark propagator constructor) for OK action «<— optimization in progress
[SWME]

— Application (correlator construction) code «— made available by FNAL/MILC
Generate data

— Kappa tuning runs «— production and analysis begun for tree-level OK action

— Physical-mass ensembles «<— HISQ ensembles made publicly available by MILC
Calculate current renormalization factors «— independent of developing code, data
production
Analyze data

— Correlator fits

— Staggered chiral perturbation theory fits «— presently used formula applies for OK
bottom and charm, HISQ light quarks on HISQ ensembles

— Estimate systematics



Recent work

Optimization of OK inverter ~ Lattice 2013 talk [ Yong-Chull Jang et al.,
SWME]

— Precalculate gauge-link combinations ~ acceleration of bi-stabilized conjugate
gradient inverter

— Wrote and tested GPU code

— Optimizations to reduce overheads in progress

Masses of B,() mesons and bottomonium ~ spectrum tests of tree-level
improved OK action
— Data for coarse (~ 0.12 fm) Asqtad staggered ensemble

— Quantify improvement in hyperfine mass splittings, inconsistency parameter
[DeTar et al., Lattice 2010]

— Completed preliminary tests of dispersion relations, extractions of rest and
kinetic masses

— Correlator fits for cross checks with increased statistics in progress



Summary and outlook

Flavor physics entering an exciting era

— Increasing precision of SM and experimental results — very precise tests of
CKM description, searches for new physics

— |V, crucial in this era, precise determination essential
Lattice QCD calculations of B — D®/v form factors + experimental
branching fractions will yield very precise values for |V

— QGreat opportunities afforded by high impact, (comparatively) low effort
approaches ~ improve state of art; B — D* form factor at zero recoil

— Powerful competition, but generous experts; FNAL/MILC generating 0.03 fm
HISQ ensemble

Oktay-Kronfeld improved Fermilab action for bottom and charm can be
competitive with other approaches (e.g., HISQ-HISQ, NRQCD-HISQ) in
near future

Taking advantage of opportunities ~ coding and analysis, formal efforts,
investigating alternative approaches (e.g., OK-HISQ bottom-charm, interp.)



