The search for new physics in neutral kaon mixing and $B \rightarrow D^{(*)} \ell \nu$ form factors from lattice QCD

Jon A. Bailey

SWME Collaboration

Seoul National University

November 12, 2013

Updated for online version Nov. 22

Goals

- Understanding physics of quark flavor, CP violation
- Searches for new physics ~ significant pressure on CKM description of quark flavor physics
 - 3σ differences: $|V_{ub}|_{excl.}$ and $|V_{ub}|_{incl.}$, BaBar excess in R(D^(*))
 - Error in SM BR $(K \to \pi \nu \overline{\nu})$ dominated by error in $|V_{cb}|$
 - Error in SM $|\varepsilon_K|$ dominated by error in $|V_{cb}|$
- Determinations of $|V_{cb}|$ and $|V_{ub}|$ with greater precision, essential
- Experiment ahead of theory
 - Errors in hadronic weak matrix elements (theory) often dominate, limit impact of high-luminosity experiments
 - Next generation B: Belle II, BESIII, LHCb
 - Kaon experiments: KLOE, ORKA, NA62, KOTO, TREK, Project X
- Need calculations with controlled, improvable errors ~ LQCD

Indirect CP violation and $\left| V_{cb} \right|$

- ~ 3σ difference between SM and experimental $|\epsilon_K| \sim |V_{cb}|^4$ reported by SWME (Lattice 2012 proc.)
 - Exclusive $|V_{cb}|$ (from B \rightarrow D^{*}*lv* at zero recoil), SWME or lattice average B_K
 - Vanishes with inclusive $|V_{cb}|$
- Updates of exclusive $|V_{cb}|$ from B $\rightarrow D^{(*)}lv$ (FNAL/MILC, Lattice 2013)

• New exclusive $|V_{cb}|$ increases difference between SM and experimental $|\epsilon_K|$

Exclusive and inclusive $\left| V_{cb} \right|$

- 3.0 σ difference: exclusive $|V_{cb}|$ from B $\rightarrow D^* lv$ and inclusive $|V_{cb}|$
- New exclusive $|V_{cb}|$ from only lattice QCD calculations for B \rightarrow D*lv* and B \rightarrow D^{*}*lv* including vacuum polarization effects (update supersedes previous)
- Cross-checks of systematics ~ lattice QCD calculations with different discretizations of valence, sea quark actions

Exclusive $\left|V_{cb}\right|$ and new physics

- Next generation intensity-frontier experiments will push experimental errors in $B \rightarrow Dlv$ and $B \rightarrow D^*lv$ below ~ 1%
- $|V_{cb}|$ normalizes Unitarity Triangle ~ impact on flavor physics
- Lattice QCD calculations for $B \rightarrow D^* lv$ and $B \rightarrow D lv$ with different systematics, greater precision, vital to search for new physics

• FNAL/MILC, RBC/UKQCD, HPQCD preparing next attack on $B \rightarrow D^{(*)}lv$

- At tree-level in SM, $b \rightarrow c$ transition *via* vector, axial currents ~ $|V_{cb}|$
- Spectator u(d) quark for charged (neutral) B and neutral (charged) $D^{(*)}$
- Valence quarks immersed in sea of gluons, quark-antiquark vacuum polarization
- Stability under strong interactions ~ gold-plated for lattice QCD

$|V_{cb}|$ from $B \rightarrow D^{(*)}lv$

$$\frac{d\Gamma}{d\omega}(B \to D\ell\nu) = \frac{G_F^2 |V_{cb}|^2 M_B^5}{48\pi^3} (\omega^2 - 1)^{3/2} r^3 (1+r)^2 F_D^2(\omega)$$
$$\frac{d\Gamma}{d\omega}(B \to D^*\ell\nu) = \frac{G_F^2 |V_{cb}|^2 M_B^5}{4\pi^3} |\eta_{\rm EW}|^2 (1+\pi\alpha) (\omega^2 - 1)^{1/2} r^{*3} (1-r^*)^2 \chi(\omega) F_{D^*}^2(\omega)$$

- Partial decay rates, form factor shapes (*not* normalization), from experiment
- $D^{(*)}$ energy in B rest frame $\sim \omega = v_B \cdot v_{D^{(*)}}$
- Well-known quantities, kinematic factors, higher order electroweak corrections
 - Coulomb attraction in charged D^{*} final state (for neutral D^{*}, $\pi \alpha \rightarrow 0$)
 - Electroweak correction $\eta_{\rm EW}$ from NLO box diagrams, γ or Z exchanged with W

$$- r = M_D/M_B, r^* = M_{D^*}/M_B$$
$$- \chi(\omega) = \frac{\omega + 1}{12} \left(5\omega + 1 - \frac{8\omega(\omega - 1)r^*}{(1 - r^*)^2} \right)$$

- Form factors from theory ~ hadronic matrix elements
- CKM matrix element

$B \rightarrow D^{(*)}lv$ form factors

$$F_{D}(\omega) = h_{+}(\omega) + \left(\frac{1-r}{1+r}\right)h_{-}(\omega)$$

$$12(1-r^{*})^{2}\chi(\omega)F_{D^{*}}^{2}(\omega) = \left[(\omega-r^{*})(\omega+1)h_{A_{1}}(\omega) - (\omega^{2}-1)(r^{*}h_{A_{2}}(\omega) + h_{A_{3}}(\omega))\right]^{2}$$

$$+ 2(1-2\omega r^{*}+r^{*2})\left[(\omega+1)^{2}h_{A_{1}}^{2}(\omega) + (\omega^{2}-1)h_{V}^{2}(\omega)\right]$$

• Heavy-quark spin-flavor symmetry

$$F_D(\omega) = F_{D^*}(\omega) = \xi(\omega), \ \xi(1) = 1$$

• $B \rightarrow D^* l v$ at zero recoil

$$F_{D^*}(1) = h_{A_1}(1)$$

• Theorists must calculate small deviation from 1

$B \rightarrow D^{(*)}lv$ hadronic matrix elements

$$\begin{aligned} \frac{\langle D(p_D)|V^{\mu}|B(p_B)\rangle}{\sqrt{M_D M_B}} &= (v_B + v_D)^{\mu}h_+(\omega) + (v_B - v_D)^{\mu}h_-(\omega),\\ \frac{\langle D^*(p_{D^*},\epsilon)|A^{\mu}|B(p_B)\rangle}{\sqrt{M_{D^*}M_B}} &= i\left[\epsilon^{*\mu}(1+\omega)h_{A_1}(\omega) - (\epsilon^* \cdot v_B)(v_B^{\mu}h_{A_2}(\omega) + v_{D^*}^{\mu}h_{A_3}(\omega))\right],\\ \frac{\langle D^*(p_{D^*},\epsilon)|V^{\mu}|B(p_B)\rangle}{\sqrt{M_{D^*}M_B}} &= \varepsilon^{\mu\nu}{}_{\rho\sigma}\epsilon^*_{\nu}v_B^{\rho}v_{D^*}^{\sigma}h_V(\omega) \end{aligned}$$

- Hadronic matrix elements ← coefficients of exponential expansions of lattice QCD correlation functions
 - Lattice theory interpolating operators for B, D^(*)
 - Lattice theory axial, vector currents
- Optimal correlator ratios
 - Statistical errors from Monte Carlo integration cancel
 - Lattice current renormalization partially cancels
- For B \rightarrow D^{*}*lv* at zero recoil, $F_{D^*}(1) = h_{Al}(1) \sim$ axial current matrix element at $p_{D^*} = p_B$

- Hadronic matrix elements ← coefficients of exponential expansions of lattice QCD correlation functions
 - Lattice theory interpolating operators for B, D^(*)
 - Lattice theory axial, vector currents
- Optimal correlator ratios
 - Statistical errors from Monte Carlo integration cancel
 - Lattice current renormalization partially cancels
- For $B \to D^* lv$ at zero recoil, $F_{D^*}(1) = h_{Al}(1) \sim axial$ current matrix element at $p_{D^*} = p_B$

$B \rightarrow D^{(*)}$ program philosophy

- Maximize precision: Calculate all (six) form factors at non-zero recoil ~ maximize statistics, kinematic overlap with experiments
 - Multiple-year FNAL/MILC effort began with low statistics calculation of axial current matrix element at zero recoil (one form factor); high statistics update (Lattice 2013) is precision world leader
 - Non-zero recoil calculations require vector current matrix elements, suffer from larger statistical errors, need additional current renormalization factors
 - $B \rightarrow D^*$ at non-zero recoil (four form factors) not done ~ FNAL/MILC effort another first [Laiho and Du]
- Maximize efficiency: Calculate *one* form factor h_{AI} (for $B \rightarrow D^*$) *at zero recoil* with target errors dictated by threshold for phenomenological impact ~ 1%

$B \rightarrow D^*$ at zero recoil

- Calculations of $h_{AI}(1)$ from PRD 2009, Lattice 2013 update [FNAL/MILC]
- Error budgets from PRD 2009 (left) and for Lattice 2013 PRELIMINARY (right)

Error	PRD 2009	Lattice 2013
Statistics	1.4%	0.4%
$\chi \mathrm{PT}$	0.9%	0.6%
$g_{DD^*\pi}$	0.9%	0.3%
Kappa tuning	0.7%	0.2%
Discretization errors	1.5%	1.0%
Current matching	0.3%	0.5%
Tadpole tuning	0.4%	_
Isospin breaking	—	0.1%
Total	2.6%	1.4%

- "Discretization errors" are (mostly) heavy-quark discretization effects
- Dominant errors are heavy quark errors (1st) and chiral extrapolation (2nd)

- Clover-improved Wilson bottom, charm with Fermilab interpretation *via* HQET [EI-Khadra et al., PRD 1997; Kronfeld, PRD 2000]
- Asqtad-improved staggered light quarks (equal up and down quark masses, no electromagnetism) [MILC, PRD 1999; Lepage, PRD 1999]
- 2+1 flavor Asqtad staggered gauge ensembles [Weisz, NPB 1983; Curci et al., PLB 1983; Weisz and Wohlert, NPB 1984; Luscher and Weisz, PLB and CMP 1985; Alford et al., PLB 1995; Bernard et al., PRD 1998]
 - Five lattice spacings from 0.15 to 0.045 fm for continuum extrapolation
 - Up-down masses from 0.4 to 0.1 of strange mass for chiral extrapolation (to 0.037)
- Oktay-Kronfeld action (improved Fermilab action) designed to reduce heavy-quark discretization errors \sim competitive with HISQ charm, best for bottom [Oktay and Kronfeld, PRD 2008]
- 2+1+1 flavor HISQ gauge ensembles generated at physical up-down masses [MILC, PRD 2013]

Correlators

Correlator ratio

- For $t_{source} \ll t \ll t_{source} + T$, ratio plateau ~ form factor [FNAL/MILC, PRD 2009, and refs. therein] $\frac{C^{B \to D^{*}}(t,T)C^{D^{*} \to B}(t,T)}{C^{B \to B}(t,T)C^{D^{*} \to D^{*}}(t,T)} \to \frac{\langle D^{*}|A_{cb}^{j}|B\rangle\langle B|A_{bc}^{j}|D^{*}\rangle}{\langle B|V_{bb}^{4}|B\rangle\langle D^{*}|V_{cc}^{4}|D^{*}\rangle} = \left|\frac{h_{A_{1}}(1)}{\rho_{A^{j}}}\right|^{2} + \dots$
- $\rho_{A_{i}}$, ratio of lattice to continuum current renorm. factors [Harada et al., PRD 2002; FNAL/MILC, PRD 2009]
 - Very close to one by construction
 - Computing deviation separate from generation of correlators
 - Perturbation theory applies, numerical suppression of first order

$$\rho_{A^j} = 1 + O(\alpha_s)$$

Chiral-continuum extrapolation

[Laiho and Van de Water, PRD 2006]

- Staggered chiral perturbation theory through NLO, with NNLO analytic terms
 - Build chiral effective field theory for effective continuum action of lattice theory
 - Fermilab charm, bottom quarks
 - Staggered up, down, strange quarks in valence and sea
 - Light-quark and gluon discretization errors, (staggered) taste symmetry breaking
 - Light-quark mass dependence of form factor

Fit to staggered chiral perturbation theory, extrapolate to continuum and physical up-down quark mass

Cusp near physical pion mass from $D\pi$ threshold and $M_{D^*} - M_D \approx M_{\pi}$; uncertainty in size dominated by $g_{DD^*\pi}$

Error budget projections

Error	Lattice 2013	1-loop OK	tree-level OK
Statistics	0.4%	0.3%	0.3%
$\chi \mathrm{PT}, g_{DD^*\pi}$	0.7%	0.3%	0.3%
Kappa tuning	0.2%	0.2%	0.2%
Discretization errors	1.0%	0.2%	0.7%
Current matching	0.5%	0.5%	0.5%
Isospin breaking	0.1%	0.1%	0.1%
Total	1.4%	0.7%	1.0%

- Projected discretization errors from power-counting estimates of heavy-quark errors
- "1-loop OK" means mass-dimension five operators in the action, corresponding operators in the current, are improved at one-loop
- "tree-level OK" means tree-level improvement for action, current
- Assumptions:
 - 8 source times per ensemble, 1000 gauge configurations on existing HISQ ensembles, additional ensemble with lattice spacing 0.03 fm [MILC, planned for HISQ bottom]
 - Errors from statistics, kappa tuning, ChPT, $g_{DD^*\pi}$ scale with statistics
 - 50% of errors from ChPT, $g_{DD*\pi}$ eliminated by inclusion of physical-point ensembles

Major tasks

- Design B and D^{*} interpolating operators \leftarrow presently used operators suffice
- Improve current, action \leftarrow FNAL/MILC colleagues \sim expert consultants
 - Enumerate operators through third-order in HQET
 - Match matrix elements at tree-level, one-loop
- Develop code
 - Inverter (quark propagator constructor) for OK action ← optimization in progress [SWME]
 - Application (correlator construction) code \leftarrow made available by FNAL/MILC
- Generate data
 - Kappa tuning runs ← production and analysis begun for tree-level OK action
 - Physical-mass ensembles ← HISQ ensembles made publicly available by MILC
- Calculate current renormalization factors ← independent of developing code, data production
- Analyze data
 - Correlator fits
 - Staggered chiral perturbation theory fits ← presently used formula applies for OK bottom and charm, HISQ light quarks on HISQ ensembles
 - Estimate systematics

Recent work

- Optimization of OK inverter ~ Lattice 2013 talk [Yong-Chull Jang *et al.*, SWME]
 - Precalculate gauge-link combinations ~ acceleration of bi-stabilized conjugate gradient inverter
 - Wrote and tested GPU code
 - Optimizations to reduce overheads in progress
- Masses of B_s^(*) mesons and bottomonium ~ spectrum tests of tree-level improved OK action
 - Data for coarse (~ 0.12 fm) Asqtad staggered ensemble
 - Quantify improvement in hyperfine mass splittings, inconsistency parameter [DeTar et al., Lattice 2010]
 - Completed preliminary tests of dispersion relations, extractions of rest and kinetic masses
 - Correlator fits for cross checks with increased statistics in progress

Summary and outlook

- Flavor physics entering an exciting era
 - Increasing precision of SM and experimental results → very precise tests of CKM description, searches for new physics
 - |V_{cb}| crucial in this era, precise determination essential
- Lattice QCD calculations of $B \rightarrow D^{(*)}lv$ form factors + experimental branching fractions will yield very precise values for $|V_{cb}|$
 - Great opportunities afforded by high impact, (comparatively) low effort approaches ~ improve state of art; $B \rightarrow D^*$ form factor at zero recoil
 - Powerful competition, but generous experts; FNAL/MILC generating 0.03 fm HISQ ensemble
- Oktay-Kronfeld improved Fermilab action for bottom and charm can be competitive with other approaches (*e.g.*, HISQ-HISQ, NRQCD-HISQ) in near future
- Taking advantage of opportunities ~ coding and analysis, formal efforts, investigating alternative approaches (*e.g.*, OK-HISQ bottom-charm, interp.)