2HDM for the LHC Higgs boson data at $\sqrt{s} = 7$ and 8 TeV

based on arXiv:1310,3374

Jong-Phil Lee Korea Univ. jongphil7@gmail.com

In Collaboration with S. Chang, S.K. Kang, K.Y. Lee, S.C. Park, and J. Song

The 3rd KIAS Workshop on Particle Physics and Cosmology KIAS, 2013.11.11.

Motivation

- The LHC has discovered a Higgs-like particle of mass 126 GeV in 2012.
- The ATLAS and CMS updated the Higgs search results with the data of 5/fb(7 TeV) + 21/fb(8 TeV) in 2013.
- The particle gets closer to the SM Higgs, with its couplings as well as spin-parity.
- But it could be "a Higgs" of some extended model, rather than "the Higgs" of the SM.
- The 2-Higgs doublet model (2HDM) is a good candidate for such a possibility.

2 HDM

One more scalar doublet

$$H_{u} = \begin{pmatrix} H_{u}^{+} \\ \frac{v_{u} + H_{u}^{0} + iA_{u}^{0}}{\sqrt{2}} \end{pmatrix}, \qquad H_{d} = \begin{pmatrix} H_{d}^{+} \\ \frac{v_{d} + H_{d}^{0} + iA_{d}^{0}}{\sqrt{2}} \end{pmatrix}$$

$$\tan\beta = \frac{v_u}{v_d}$$

$$h^{0} = -H_{d}^{0} \sin \alpha + H_{u}^{0} \cos \alpha,$$
$$H^{0} = H_{d}^{0} \cos \alpha + H_{u}^{0} \sin \alpha,$$

Physical states

5 Higgs bosons

- **h**⁰ : CP-even light neutral
- **H**⁰ : CP-even heavy neutral
- **A⁰** : CP-odd pseudoscalar
- H^{\pm} : charged scalar

Model Categorization with Z₂ sym

Avoiding the tree-level FCNC

$$\mathcal{L}_{\text{yukawa}}^{\text{THDM}} = -\bar{Q}_L Y_u \tilde{\Phi}_u u_R - \bar{Q}_L Y_d \Phi_d d_R - \bar{L}_L Y_\ell \Phi_\ell \ell_R + \text{H.c.},$$

TADLE I.	variatio	ni ili citai	ge assigi	initents o	L_2	symmetry.
	Φ_1	Φ_2	u_R	d_R	ℓ_R	Q_L, L_L
Туре І	+	_	_	_	_	+
Type II	+	—	—	+	+	+
Туре Х	+	_	—	—	+	+
Type Y	+	—	—	+	—	+

TABLE I. Variation in charge assignments of the Z_2 symmetry.

Aoki et al., PRD80,015017

Two Scenarios

Scenario-1

The observed particle is the lightest CP-even Higgs h^0 .

Scenario-2

The observed particle is the heavy CP-even Higgs H^0 , and the lightest h^0 is buried in the lower mass region.

Effective Lagrangian

 $h = h^0$ (in S1) or H^0 (in S2)

Yukawa couplings

$$\mathcal{L}_{\text{Yuk}} = -\sum_{f=u,d,\ell} \frac{m_f}{v} \left(\widehat{y}_f^h \overline{f} f h^0 + \widehat{y}_f^H \overline{f} f H^0 \right)$$

	\widehat{y}_{u}^{h}	\widehat{y}_d^h	\widehat{y}^h_ℓ	\widehat{y}_{u}^{H}	\widehat{y}_d^H	\widehat{y}^H_ℓ
Type I	$rac{\cos lpha}{\sin eta}$	$rac{\cos lpha}{\sin eta}$	$rac{\cos lpha}{\sin eta}$	$rac{\sin lpha}{\sin eta}$	$rac{\sin lpha}{\sin eta}$	$\frac{\sin \alpha}{\sin \beta}$
Type II	$rac{\cos lpha}{\sin eta}$	$-\frac{\sin \alpha}{\cos \beta}$	$-\frac{\sin \alpha}{\cos \beta}$	$rac{\sin lpha}{\sin eta}$	$rac{\cos lpha}{\cos eta}$	$rac{\cos lpha}{\cos eta}$
Type X	$rac{\cos lpha}{\sin eta}$	$rac{\cos lpha}{\sin eta}$	$-\frac{\sin \alpha}{\cos \beta}$	$rac{\sin lpha}{\sin eta}$	$rac{\sin lpha}{\sin eta}$	$rac{\cos lpha}{\cos eta}$
Type Y	$rac{\cos lpha}{\sin eta}$	$-\frac{\sin \alpha}{\cos \beta}$	$rac{\cos lpha}{\sin eta}$	$\frac{\sin \alpha}{\sin \beta}$	$rac{\cos lpha}{\cos eta}$	$\frac{\sin \alpha}{\sin \beta}$

ggF+tth vs VBF+Vh

LHC Data after Moriond-2013

1	able 1. Summary of the Life ingge	Signals at 1 and 0 101.
Production	ATLAS	\mathbf{CMS}
$ggF + t\bar{t}h$	$\widetilde{R}_{\gamma\gamma}^{ggF+t\bar{t}h} = 1.47^{+0.66}_{-0.52} \ [40]$	$\widetilde{R}^{ggF+t\bar{t}h}_{\gamma\gamma} = 0.52 \pm 0.5 \ [44]$
	$\tilde{R}_{WW}^{ggF} = 0.82 \pm 0.36$ [41]	$\widetilde{R}_{WW}^{ggF} = 0.73_{-0.20}^{+0.22} \ [5]$
	$\widetilde{R}_{ZZ}^{ggF+t\bar{t}h} = 1.8^{+0.8}_{-0.5}$ [42]	$\widetilde{R}_{ZZ}^{ggF+t\bar{t}h} = 0.9^{+0.5}_{-0.4} \ [34]$
	$\widetilde{R}_{\tau\tau}^{ggF} = 2.2^{+2.6}_{-2.3} \ [6]$	$\widetilde{R}_{\tau\tau}^{ggF} = 0.77^{+0.58}_{-0.55}$ [45]
VBF + Vh	$\widetilde{R}_{\gamma\gamma}^{\text{VBF}+Vh} = 1.73^{+1.27}_{-1.11} \ [40]$	$\widetilde{R}_{\gamma\gamma}^{\text{VBF}+Vh} = 1.48^{+1.5}_{-1.1} \ [44]$
	$\tilde{R}_{WW}^{VBF} = 1.66 \pm 0.79$ [41]	$\widetilde{R}_{WW}^{VBF} = -0.05_{-0.56}^{+0.75}, \ \widetilde{R}_{WW}^{Vh} = 0.51_{-0.94}^{+1.26} \ [5]$
	$\widetilde{R}_{ZZ}^{\text{VBF}+Vh} = 1.2^{+3.8}_{-1.4} \ [42]$	$\widetilde{R}_{ZZ}^{VBF+Vh} = 1.0^{+2.4}_{-2.3} \ [34]$
	$\widetilde{R}_{\tau\tau}^{\text{VBF}+Vh} = -0.32^{+1.7}_{-1.5}$ [6]	$\widetilde{R}_{\tau\tau}^{\text{VBF}} = 1.42^{+0.70}_{-0.64}, \ \widetilde{R}_{\tau\tau}^{Vh} = 0.98^{+1.68}_{-1.50} \ [45]$
	$\widetilde{R}_{b\bar{b}}^{\text{VBF}+Vh} = -0.40 \pm 1.0 \ [43]$	$\widetilde{R}_{b\bar{b}}^{VBF+Vh} = 1.15 \pm 0.62 \ [5]$

Table 1. Summary of the LHC Higgs signals at 7 and 8 TeV.

signal strength

$$R_{\texttt{decay}}^{\texttt{production}} \equiv \frac{\sum_{j} \sigma(pp \to j \to h) \times B(h \to \texttt{decay})|_{\texttt{observed}}}{\sum_{j} \sigma(pp \to j \to h) \times B(h \to \texttt{decay})|_{\texttt{SM}}},$$

Signal strengths in 2HDM

$$R_{\gamma\gamma}^{ggF} = \left| \frac{c_g c_\gamma}{c_{\gamma,SM} C_{tot}^h} \right|^2, \qquad R_{ii}^{ggF} = \left| \frac{c_g c_i}{C_{tot}^h} \right|^2$$
$$R_{ii}^{VBF} = R_{ii}^{Vh} = R_{ii}^{VBF+Vh} = \left| \frac{c_V c_i}{C_{tot}^h} \right|^2,$$
$$R_{\gamma\gamma}^{VBF} = R_{\gamma\gamma}^{Vh} = R_{\gamma\gamma}^{VBF+Vh} = \left| \frac{c_\gamma c_V}{c_{\gamma,SM} C_{tot}^h} \right|^2,$$

$$C_{\text{tot}}^h = \sqrt{\Gamma_{\text{tot}}^h / \Gamma_{\text{tot}}^{h_{\text{SM}}}}$$
, and $i = W, Z, \tau, b$.

χ^2 - fitting

Constraints

Flavor $Br(B \rightarrow X_s \gamma)$ excludes small $M_{H^{\pm}} \leq 300$ GeV for Type-II and Type-Y; small tan β for Type-I and Type-X.

 ΔM_{B_d} excludes small tan β .

Electroweak Precision Test

 $\begin{array}{l} \Delta\rho \ \text{suppression:} \\ \text{almost degenerate } A \ \text{and } H^{\pm}, \ \text{or} \\ M_{h} \simeq M_{A}, \qquad M_{H} \simeq M_{H^{\pm}}, \qquad \sin^{2}\left(\alpha - \beta\right) \simeq 1 \end{array}$

perturbativity

LEP for S-2 Non-observation of the Higgs in lower mass region <114 GeV at e^+e^- collisions.

$$\frac{(y_{t,b})^2}{4\pi} \le 1 \quad \to \quad 0.3 \le \tan\beta \le 50$$

Our Constraints

$$H^{\pm}$$
 is assumed to be heavy:
 $M_{H^{\pm}} \geq 400 \text{ GeV}$

$$\tan \beta > 1$$
for Type-I, X $\tan \beta > 0.5$ for Type-II, Y

$$|\xi|^2 = |c_V|^2 \times \frac{\text{Br}(h^0 \to jj)}{\text{Br}(h_{\text{SM}} \to jj)} < 0.155 \text{ (in S-2)}$$

RESULTS

Best-fit points & couplings in S-1

$$c_{V} = \sin(\beta - \alpha), \quad c_{b} = \hat{y}_{d}^{h}, \quad c_{\tau} = \hat{y}_{\ell}^{h}, \quad c_{t} = c_{c} = \hat{y}_{u}^{h}.$$

$$\frac{\hat{y}_{u}^{h} \qquad \hat{y}_{d}^{h} \qquad \hat{y}_{\ell}^{h}}{\text{Type I}} \frac{\hat{y}_{u}^{h} \qquad \hat{y}_{d}^{h} \qquad \hat{y}_{\ell}^{h}}{\frac{\text{Type I}}{\sin\beta} \qquad \frac{\cos\alpha}{\sin\beta} \qquad \frac{\cos\alpha}{\sin\beta}} - \frac{\sin\alpha}{\cos\beta}}{\frac{\cos\beta}{\cos\beta}}$$

$$\frac{\text{Type II}}{\cos\beta} \frac{\cos\alpha}{\sin\beta} - \frac{\sin\alpha}{\cos\beta}}{\frac{\cos\beta}{\sin\beta}} - \frac{\sin\alpha}{\cos\beta}}{\frac{\cos\beta}{\sin\beta}}$$

$$\frac{\text{Type X}}{\sin\beta} \frac{\cos\alpha}{\sin\beta} - \frac{\sin\alpha}{\cos\beta}}{\frac{\cos\beta}{\sin\beta}}$$

Type	$\chi^2_{ m min}$	aneta	α	c_V	c_b	c_{τ}	c_t
I-1	9.42	9.89	-0.48	0.93	0.89	0.89	0.89
II-1	9.49	0.57	-1.10	1.00	1.02	1.02	0.92
X-1	9.85	5.29	0.19	0.93	1.00	-1.01	1.00
Y-1	9.77	0.79	-0.95	1.00	1.04	0.94	0.94

R for Scenario-1

Allowed $(\alpha, \tan\beta)$ in Scenario-1

Best-fit points & couplings in S-2

$c_V =$	$\cos(\beta -$	$-\alpha), c_b$	$y = \widehat{y}_d^H,$	c_{7}	$\tau = $	$\widehat{y}_{\ell}^{H}, c_t$	$= c_c =$	$\widehat{y}_u^H.$
					\widehat{y}_{u}^{I}	$\widehat{y}_d^H = \widehat{y}_d^H$	\widehat{y}^H_ℓ	
			Type	ΡI	$\frac{\sin}{\sin}$	$\frac{\alpha}{\beta} = \frac{\sin \alpha}{\sin \beta}$	$\frac{1}{\beta} = \frac{\sin \alpha}{\sin \beta}$	
			Туре	e II	$\frac{\sin}{\sin}$	$\frac{\alpha}{\beta} = \frac{\cos \alpha}{\cos \beta}$	$\frac{1}{\beta} = \frac{\cos \alpha}{\cos \beta}$	
			Туре	×Χ	$\frac{\sin}{\sin}$	$\frac{\alpha}{\beta} = \frac{\sin \alpha}{\sin \beta}$	$\frac{\cos \alpha}{\cos \beta}$	
			Type	Υ	$\frac{\sin}{\sin}$	$\frac{\alpha}{\beta} = \frac{\cos \alpha}{\cos \beta}$	$\frac{1}{\beta} = \frac{\sin \alpha}{\sin \beta}$	
Type	$\chi^2_{\rm min}$	an eta	α	C	H V	c_b^H	c_{τ}^{H}	c_t^H
I-2	9.42	9.79	1.09	0.	93	0.89	0.89	0.89

0.46

-1.38

0.61

1.00

-0.93

1.00

1.02

-1.00

1.03

1.02

1.02

0.94

II-2

X-2

Y-2

9.48

9.85

9.77

0.55

5.21

0.77

0.92

-1.00

0.94

Allowed (α , tan β) in Scenario-2

Predictions for the light h of 90 GeV

Type	$R_{\gamma\gamma}^{gg\mathrm{F}}$	$R_{ au au}^{gg\mathrm{F}}$	$R_{\tau\tau}^{\text{VBF}}$	c_V^h	c^h_b	c_{τ}^{h}	c_t^h
I-2	0.11	0.20	0.14	0.37	0.47	0.47	0.47
II-2	2.2	2.0	$1.1 imes 10^{-3}$	0.04	-0.51	-0.51	1.90
X-2	$2.7 imes 10^{-3}$	0.34	1.3	0.37	0.20	5.2	0.20
Y-2	0.32	4.7	$5.2 imes 10^{-3}$	$4.6 imes 10^{-2}$	-0.72	1.34	1.34

R values for the light h in S-2

Conclusion

- The observed boson could be the lightest CP-even h^0 or the heavy CP-even H^0 of the 2HDM.
- The 2HDM explains the LHC Higgs data very well, or better than the SM.
- It is possible that the observed particle is H^0 while h^0 is buried in the 90-100 GeV.
- The lightest h⁰ could appear in the γγ or ττ channels in the Type-II, X, Y models.
- High precision measurements below 1% level is needed to distinguish various models.