New routes of reactions by a long-lived negatively charged massive particle during big bang nucleosynthesis

Motohiko Kusakabe^{1,2}

collaborators K. S. Kim¹, Myung-Ki Cheoun², Toshitaka Kajino^{3,4} Yasushi Kino⁵, Grant J. Mathews⁶

¹Korea Aerospace Univ., ²Soongsil Univ., ³National Astronomical Observatory of Japan, ⁴Univ. Tokyo, ⁵Tohoku Univ., ⁶Univ. Notre Dame

The 3rd KIAS Workshop on particle physics and cosmology 2013/11/14

Introduction 1. Light element abundances

WMAP Science Team

 ➢ Observation of metal-poor stars
 ✓⁷Li abundance is smaller than theory by a factor of ~3

Signature of new physics?

Primordial abundances of ⁹Be, ^{10,11}B, ... are not detected yet.

2. Standard Big Bang nucleosynthesis (SBBN)

⁷Li abundance observed in metal-poor stars are a factor~3 smaller than SBBN

 $^{7}Li/H=(1.1-1.5)\times 10^{-10}$

- Some of the stars have large abundances of ⁶Li
 ⁶Li/H ≈ 6 × 10⁻¹²
- But, Lind et al. perform
 3D NLTE analysis for
 atmosphere, and found
 no detection

News: Lind et al. Astron. Astrophys. (2013)

4. Effect of long-lived negatively charged massive particle (CHAMP) on BBN

⁷Be(X⁻, γ)⁷Be_X ⁷Be_X+p \rightarrow ⁸B_X* \rightarrow ⁸B_X+ γ (MK, Kim, Cheoun, Kajino, Kino, PRD 88, 063514, 2013)

4. Effect of long-lived negatively charged massive particle (CHAMP) on BBN

(2) extensive study of XBBN

Goal

Precise calculation of recombination rates

Estimation of dependences of BBN on the mass of X⁻ (m_X), and the nuclear charge distribution

(1) Recombination rate via $^7Be(e^-, \gamma)^7Be^{3+}(X^-, e^-)^7Be_X$

$$\Gamma_{\rm rec} = \frac{n_{\rm Be^{3+}}}{n_{\rm Be^{4+}}} \left[\Gamma_{\rm Be^{3+} \to Be_X^*} \frac{\Gamma_{\rm Be_X^*, tr}}{\Gamma_{\rm Be_X^*, de} + \Gamma_{\rm Be_X^*, tr}} \right]$$

1 number ratio of Be³⁺ and Be⁴⁺ is given by equilibrium value (Saha eq.)

(2) Reaction rate of ⁷Be³⁺ via ⁷Be³⁺(X⁻, e⁻) ⁷Be_x*

$$\sigma(E) = \sigma(I(^{7}Be^{3+})) \left[\frac{E}{I(^{7}Be^{3+})} \right]^{-1/2} H(I(^{7}Be^{3+}) - E)$$

$$\sigma(I(^{7}Be^{3+})) = 10/(Z_{^{7}Be}\alpha m_{e})^{2} = 1.75 \times 10^{7} \text{ b.}$$
(3) Probability that ⁷Be_x* is converted to the GS ⁷Be_x
> The dominant destruction process:
Collisional ionization: A_x*+e[±] → A+X+e[±]
Cross section is assumed as

$$\sigma(E) = \sigma_{de}H(E - E_{th})$$

$$\sigma_{de} \sim 10^{-2} \times \pi [2n^{2}/(Z_{1}Z_{2}\alpha\mu)]^{2}$$

$$\sigma(E) = \sigma_{de}H(E - E_{th})$$

19

(2) Extensive study on XBBN Model

1. Binding energy of X-nuclides

[assumption]

 $\begin{array}{l} > \text{X:: spin 0, charge -e, mass } m_{X} \text{ (parameter)} \\ > \text{Nuclear charge density} \\ 1) \text{ Woods-Saxon } \rho(r') = \frac{ZeC}{1 + \exp[(r' - R)/a]} \\ 2) \text{ Gaussian } \rho(r') = Ze(\pi b)^{-3/2} \exp(-r'^{2}/b^{2}) \\ 3) \text{ homogeneous } \rho(r') = \frac{3Ze}{4\pi_{0}^{-3}}H(r_{0} - r') \\ \rho(r') = \frac{3Ze}{4\pi_{0}^{-3}}H(r_{0} - r') \\ r_{0} = \sqrt{5/3}\langle r_{c}^{2} \rangle^{1/2} \\ \end{array}$ $\begin{array}{l} \text{X-nucleus } \\ \text{X-nucleus } \\ \text{X-nucleus } \\ \text{V}(r) = \int_{0}^{\infty} \frac{-e\rho(r')}{x} d^{3}r' \\ \end{array}$

 \checkmark Binding energies and wave functions are derived with

1) variational calculation (Gaussian expansion method, c.f. Hiyama et al. 2003)

2) numerical integration (RADCAP, code by Bertulani 2003)

3. Recombination cross section

≻Resonant and nonresonant cross sections for (⁷Be, ⁷Li, ⁹Be, ⁴He)

Finite size of nuclear charge

→binding energies of tightly bound states are smaller than those of point-charges
 →wave functions and recombination cross sections are also different

4. Nuclear reaction rate

➢ Binding energies of X-nuclei → reaction Q-values, detailed balance
 ➢ Reaction rates of X-nuclei are estimated with those of normal nuclei correcting for charge number and reduced mass
 ➢ We adopt cross sections calculated with a quantum three-body model (Hamaguchi et al. 2007, Kamimura et al. 2008)

4. Nuclear reaction rate

➢ Binding energies of X-nuclei → reaction Q-values, detailed balance
 ➢ Reaction rates of X-nuclei are estimated with those of normal nuclei correcting for charge number and reduced mass
 ➢ We adopt cross sections calculated with a quantum three-body model (Hamaguchi et al. 2007, Kamimura et al. 2008)

Important resonant reaction:

Parameter search: case 1 (m_x=1 TeV)

► Realistic parameter region is shifted to $Y_X \gtrsim 0.02$ and $\tau_X \approx (0.6-3) \times 10^3$ s from the previous one: $Y_X \gtrsim 1$ and $\tau_X \approx (1-2) \times 10^3$ s (MK et al. 2010)

Summary

- We calculated light-element nucleosynthesis during BBN with negatively-charged X⁻ particles dynamically.
- > New route of ⁷Be_x formation (⁷Be exchange between ⁷Be³⁺ and X⁻)
- > Rates of recombination of X⁻ and ⁷Be, ⁷Li, ⁹Be, ⁴He are derived.
- New ⁹Be production reaction [⁷Li_X(d, X⁻)⁹Be].
- > Parameter region of ⁷Li reduction is moved
 - ✓ Y_X ≿ 0.02 and τ_X≈(0.6-3)x10³s (for m_X=1 TeV)
 →required abundance of X⁻ particle is smaller than the previous estimate by more than a factor of 10
- Resulting ⁷Li abundance depends significantly on assumed nuclear charge distribution
 - ✓ Energy levels of X-nuclides are affected by charge distribution
 → resonant reaction rates are also affected

Abundance

abundances evolution

case 2 (m_X=1 GeV) n_x=0.05n_b, τ_x >>200 s, η =6.19 × 10⁻¹⁰ (WMAP 9yr)

>m_x is small \rightarrow binding energies are small $\rightarrow A_x$ forms at low temperature

≻⁷Be destruction and ⁶Li production are less efficient

temperature $T_9 = T/(10^9 \text{ K})$

Parameter search: case 2 (m_x=1 GeV)

Parameter region for smaller mass cases locates at longer lifetime region:
Y_x ≿ 0.1 and τ_x≈5x10³-2x10⁵ s (for m_x=1 GeV)

Processes affecting elemental abundances

г	Model	⁷ Li problem solved ?	Signatures on other nuclides ?
Existence of particle [z~10 ⁹] Early stars [z~O(10)]	sub-SIMP X ⁰	✓	⁶ Li, ⁹ Be
	SIMP X ⁰	no	⁹ Be and/or ¹⁰ B
	CHAMP X-*	✓	⁶ Li, ⁹ Be
	Early cosmic	no	⁶ Li, ⁹ Be & ^{10,11} B
	ray		

Model

1. Recombination rate via ⁷Be(e⁻, γ)⁷Be³⁺(X⁻, e⁻)⁷Be_X

 $\Gamma_{\rm rec} = \frac{n_{\rm Be^{3+}}}{n_{\rm Be^{4+}}} \left[\Gamma_{\rm Be^{3+} \to Be_X^*} \frac{\Gamma_{\rm Be_X^*, \rm tr}}{\Gamma_{\rm Be_X^*, \rm de} + \Gamma_{\rm Be_X^*, \rm tr}} \right]$

1 number ratio of Be³⁺ and Be⁴⁺

2 Reaction rate of ⁷Be³⁺ for the charge exchange reaction ⁷Be³⁺(X⁻, e⁻) ⁷Be_X^{*}

⁽³⁾Probability that ⁷Be_X^{*} excited states (ESs) transit to the ⁷Be_X ground state (GS) $\Gamma_{Be_x^*,tr}$ rate for ES \rightarrow GS $\Gamma_{Be_x^*,de}$ destruction rate

2. number ratio Be³⁺/Be⁴⁺

1) Hydrogen like-ion $BE(n)=(Z_1Z_2\alpha)^2\mu/(2n^2); <r>
<math>n^2/(Z_1Z_2\alpha\mu)=Z_1Z_2\alpha/[2BE(n)]$ $^7Be^{3+}$ GS: BE(1) = 218 eV, $<r>=1.98 \times 10^{-9}$ cm 7Be_X (n>>1) states: BE(n) = 2.78 MeV/n², $<r>~1.04n^2 \times 10^{-13}$ cm \rightarrow^7Be_X (n=113) ESs has nearly the same binding energy as the $^7Be^{3+}$ GS

2) ⁷Be³⁺ can be considered as an isolated ionic state $\leftarrow <r > < I_{ave}(e^{\pm})$

3) The equilibrium value
$$\frac{n_{\mathrm{Be}^{3+}}}{n_{\mathrm{Be}^{4+}}} = \left(\frac{2\pi}{m_e T}\right)^{3/2} \exp\left[\frac{I(^7\mathrm{Be}^{3+})}{T}\right] n_e \sim 2\mathrm{e}^{-m_e/T}$$

3. Reaction rate for the reaction ⁷Be³⁺(X⁻, e⁻) ⁷Be_x*

➤ cross section is assumed by analogies of protonium formation and <u>muonic hydrogen formation</u> H+p→pp+e⁻ H+µ⁻→pµ+e⁻ $\sigma(E) = \sigma(I(^{7}\text{Be}^{3+})) \left[\frac{E}{I(^{7}\text{Be}^{3+})}\right]^{-1/2} H(I(^{7}\text{Be}^{3+}) - E)$ $\sigma(I(^{7}\text{Be}^{3+})) = 10/(Z_{^{7}\text{Be}}\alpha m_{e})^{2} = 1.75 \times 10^{7} \text{ b.}$

➢ binding energies of final states are similar to that of the initial state →⁷Be³⁺ (n) is converted to ⁷Be_X^{*} (113n)

4. Probability that ${}^{7}\text{Be}_{X}{}^{*}$ is converted to ${}^{7}\text{Be}_{X}$

I) transition

1) Spontaneous emission: $A_X^* \rightarrow A_X^{*'+\gamma}$

2) Stimulate emission: $A_X^* + \gamma \rightarrow A_X^* + 2\gamma$

3) Photo-absorption: $A_x^{*'+\gamma} \rightarrow A_x^{*}$

 $\begin{array}{l} \text{II) destruction} \\ \text{1) Collisional ionization: } A_{X}^{*} + e^{\pm} \rightarrow A + X^{-} + e^{\pm} \\ \text{2) Charge exchange: } A_{X}^{*} + e^{-} \rightarrow A^{(Z-1)+} + X^{-} \\ \text{3) Photo-ionization: } A_{X}^{*} + \gamma \rightarrow A + X^{-} \\ \Gamma_{Be_{X}^{*}, tr} \ \gtrsim \ \Gamma_{Be_{X}^{*}, de} \ \ \rightarrow GS \ ^{7}Be^{3+} \text{ is only available path to } GS \ ^{7}Be_{X} \\ \end{array}$

5. Recombination rate via ⁷Be(e⁻, γ)⁷Be³⁺(X⁻, e⁻)⁷Be_X

$$\Gamma_{\rm rec} = \frac{n_{\rm Be^{3+}}}{n_{\rm Be^{4+}}} \left[\Gamma_{\rm Be^{3+} \to Be_X^*} \frac{\Gamma_{\rm Be_X^*, tr}}{\Gamma_{\rm Be_X^*, de} + \Gamma_{\rm Be_X^*, tr}} \right]$$

(1)number ratio of Be³⁺ and Be⁴⁺ is given by equilibrium value (Saha eq.)

(2) cross section for charge exchange reaction $^7Be^{3+}(X^-, e^-)^7Be_X^*$ is assumed as

$$\sigma(E) = \sigma(I(^{7}\text{Be}^{3+})) \left[\frac{E}{I(^{7}\text{Be}^{3+})} \right]^{-1/2} H(I(^{7}\text{Be}^{3+}) - E)$$

MK, Kim, Cheoun, Kajino, Kino,
$$\sigma(I(^{7}\text{Be}^{3+})) = 10/(Z_{^{7}\text{Be}}\alpha m_{e})^{2} = 1.75 \times 10^{7} \text{ b.}$$

PRD 88, 063514, (2013)

③Probability of the GS ⁷Be_x formation

The dominant destruction process: ionization via A_x*+e[±] collision

Cross section is assumed as

$$\sigma(E) = \sigma_{\rm de} H (E - E_{\rm th})$$

3. Reaction rate for the reaction ⁷Be³⁺(X⁻, e⁻) ⁷Be_x*

Figure 9. Ionization cross sections in the energy range $E = 10^{-1}-2.5 \times 10^5$ eV calculated by the present method of direct numerical solution. The values at E < I are the present results for the protonium formation (1), and the ones at E > I are the results of paper I ($E \leq 500$ eV) and paper II ($E \geq 500$ eV) for the break-up ionization (2). The CTMC results are given by Schultz *et al* (1996). The μ^- + H results are the capture cross section σ_{cap} calculated by the semiclassical method (Kwong *et al* 1989, Cohen 1998).

4. Probability that ${}^{7}Be_{x}{}^{*}$ is converted to ${}^{7}Be_{x}$

I) transition 1) Spontaneous emission: $A_x^* \rightarrow A_x^{*'+\gamma}$ 2) Stimulate emission: $A_x^*+\gamma \rightarrow A_x^{*'+2\gamma}$

3) Photo-absorption: $A_x^{*'+\gamma} \rightarrow A_x^{*}$

$$\Gamma_{u,\text{st}}^{\gamma} = \sum_{l} B_{ul} B_{\nu_{ul}}(T) = \sum_{l} \frac{2Z_{A}^{2} \alpha}{m_{A}} \frac{g_{l}}{g_{u}} f_{lu} \frac{E_{ul}^{2}}{\exp(E_{ul}/T) - 1}$$

$$\sim \frac{2N_{l} Z_{A}^{2} \alpha}{m_{A}} T \overline{E_{ul}}$$

$$= 9.21 \times 10^{13} \text{ s}^{-1} \left(\frac{N_{l}}{226}\right) \left(\frac{\overline{E_{ul}}}{218 \text{ eV}}\right) \left(\frac{T_{9}}{0.4}\right) \left(\frac{Z_{A}}{4}\right)^{2} \left(\frac{m_{A}}{6.53 \text{ GeV}}\right)^{-1}$$

$$\overline{E_{ul}} \equiv \sum_{l} [(g_{l}/g_{u}) f_{lu} E_{ul}]/N_{l}$$

4. Probability that $^{7}Be_{x}^{*}$ is converted to $^{7}Be_{x}$

 $x = E/U_k$

3. Recombination cross sections

≻Resonant and nonresonant cross sections for (⁷Be, ⁷Li, ⁹Be, ⁴He)

Cross sections for other nuclei are approximately given by those for the point-charge case into ground states. $2^{9}\pi^{2}e^{2}$ E

 $\sigma \approx \frac{2^9 \pi^2 e_1^2}{3 \exp(4)} \frac{E_{\text{bin}}}{\mu^3 v^2}$

Transition from bound states of the first nuclear excited state of ⁷Be^{*} and heavy exotic particle X⁻ to those of the ground state ⁷Be and X⁻

 \rightarrow ⁷Be= α +³He: two-body bound state α , ³He, X⁻ are called 1, 2, 3, respectively. Consider the situation show in the figure.

 \blacktriangleright Assume that the atom can be described as the sum of two wave functions for 1) nucleus (1+2 two-body system), and 2) atom ([1+2]+3 two-body system)Eq. (A. 2)

atom (composed of particles 1+2+3)

- $\mathbf{d} = \sum_{i=1}^{3} q_i \mathbf{x}_i = \frac{(q_1 + q_2)M_3 q_3(M_1 + M_2)}{M_1 + M_2 + M_3} \mathbf{r}' + \frac{M_2 q_1 M_1 q_3}{M_1 + M_2} \mathbf{r}$
- Matrix element for the E1 transition is derived as integration over r and r' of E1 moment multiplied by wave functions of initial and final states. The E1 operator is the sum of a term of **r** and **r'**. By orthogonalities of wave functions, matrix element is zero for a transition to a final state whose nuclear and atomic states are different from those of the initial state

$$\begin{split} & \textbf{(m)} = \textbf{(m)} \quad \textbf{(m)$$

Then, E1 matrix element is zero for a transition to a final state whose atomic and nuclear states are different from those of the initial state.

FIG. 1: Binding energies of nuclei and X^- particle with $m_X = 100$ TeV for different charge distributions of Gaussian (black lines), Woods-Saxon type with diffuseness parameters a = 0.45 fm (purple lines), 0.40 fm (blue lines), and 0.35 fm (green lines), and homogeneous well (red lines). Error bars indicate uncertainties determined from uncertainties in experimental

FIG. 2: Binding energies and resonance energies as a function of m_X . The upper black lines show resonance energies in the reactions ${}^7\text{Be}_X(p, \gamma){}^8\text{B}_X$ and ${}^8\text{Be}_X(p, \gamma){}^9\text{B}_X$. The lower lines show binding energies of ${}^7\text{Be}_X$ (black lines), ${}^8\text{Be}_X$ (purple lines), ${}^8\text{B}_X$ (green lines), ${}^9\text{B}_X$ (gray lines), and the first atomic excited states ${}^8\text{B}_X^{*a}$ (red lines) and ${}^9\text{B}_X^{*a}$ (blue lines). Results for different nuclear charge distributions of Gaussian (dashed lines), Woods-Saxon type with diffuseness parameter a = 0.40 fm (solid lines), and homogeneous well (dot-dashed lines) are drawn. Open circles show energy heights derived by the quantum many-body calculation for $m_X = \infty$ [39].

FIG. 23: Contours of constant lithium abundances relative FIG. 24: Same as in Fig. 23 when the charged-current decay to observed values in MPSs, i.e., $d({}^{6}\text{Li}) = {}^{6}\text{Li}{}^{\text{Cal}}/{}^{6}\text{Li}{}^{\text{Obs}}$ (blue of ${}^{7}\text{Be}_{X} \rightarrow {}^{7}\text{Li} + X^{0}$ is included. lines) and $d({}^{7}\text{Li}) = {}^{7}\text{Li}{}^{\text{Cal}}/{}^{7}\text{Li}{}^{\text{Obs}}$ (red lines) for the case of

to observed values in MPSS, i.e., $d(LI) = LI^{-7} LI^{-7} LI^{-6}$ (blue lines) and $d({}^{7}Li) = {}^{7}Li^{Cal}/{}^{7}Li^{Obs}$ (red lines) for the case of $m_X = 1$ GeV. The adopted observational constraint on the ${}^{7}Li$ abundance is the center value of $\log({}^{7}Li/H) = -12 + (2.199 \pm 0.086)$ derived in a 3D NLTE model [9], while that of ${}^{6}Li$ is taken from the two sigma upper limit of G64-12 (NLTE model with 5 parameters), ${}^{6}Li/H = (0.9 \pm 4.3) \times 10^{-12}$ [33]. Dashed lines around the line of $d({}^{7}Li) = 1$ correspond to the 2 sigma uncertainty in the observational constraint. The gray region which locates right from contours of $d({}^{6}Li) = 10$ or the 2 sigma lower limit, $d({}^{7}Li) = 0.67$, are excluded by overproduction of ${}^{6}Li$ and underproduction of ${}^{7}Li$, respectively. The orange region is interesting parameter region in which a significant ${}^{7}Li$ reduction realizes without an overproduction of ${}^{6}Li$. Purple lines are contours of the abundance ratio ${}^{9}Be/H$ predicted when the unknown rate of the reaction ${}^{7}Li_X(d, X^{-}){}^{9}Be$ is assumed as described in text.

Processes affecting elemental abundances

	Model	⁷ Li problem solved ?	Signatures on other nuclides ?
Existence of particle [z~10 ⁹]	sub-SIMP X ⁰	√ [1]	⁶ Li [2], ⁹ Be [1]
	SIMP X ⁰ [3]	no	⁹ Be and/or ¹⁰ B
	CHAMP X-*	✓ [4,5, <mark>6</mark>]	⁶ Li [7], ⁹ Be [6]
Early stars [z~O(10)]	Early cosmic ray	no	⁶ Li [8], ⁹ Be & ^{10,11} B [9, 10]

[1] Kawasaki, MK (2011)	[6] MK, Kim, Cheoun, Kajino, Mathews
[2] MK, Kawasaki (2012)	(in preparation)
[3] MK, Kajino, Yoshida, Mathews (2009)	[7] Pospelov (2007)
[4] Bird, Koopmans, Pospelov (2008) [stronger]	[8] Rollinde, Vangioni, Olive (2006)
[5] MK, Kajino, Boyd, Yoshida, Mathews (2007)	[9] Rollinde, Maurin, Vangioni, Olive, Inoue (2008);
[weaker]	MK (2008)
	[10] MK, Kawasaki (2013)