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New physics enters for sure at the Planck scale, associated with

Newton constant of gravitation GN :

energies E ∼ MP ∼ 1019 GeV

distances l ∼ 10−33cm

time intervals δt ∼ 10−43s

However, we do not know if there is any new particle physics scale

between the Fermi and Planck scales
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If yes

proton decay yes (?)

τp ∼
Λ4

new

m5
p

Current limit τp > 1032 years;

new physics at LHC yes (?)

Electroweak scale solution to the hierarchy problem - stability of

the weak scale against quantum radiative corrections.

Supersymmetry, composite Higgs boson, large extra dimensions,

etc. Scale of new physics hundreds of GeV.
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If yes

searches for Dark Matter Weakly Interacting Massive Particles

(WIMPS) yes (?)

SUSY relic - neutralino

searches for Dark Matter annihilation yes (?)

SUSY relic - neutralino

searches for axions yes (?)

Axion is a hypothetic particle used for solution of the strong CP

problem
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If no

proton decay no

τp ≃ 1045 years for Λnew ≃ MP

Higgs and nothing else at LHC

searches for Dark Matter Weakly Interacting Massive Particles

(WIMPS) no

searches for Dark Matter annihilation no

searches for axions no

Interacts too weakly if Λnew ≃ MP
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Hierarchy problem and the scale

of new physics
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Higgs mass hierarchy problem

Actually, two different problems:

1. Why MW ≪ MPlanck?

2. Quantum corrections to the Higgs mass MH are (from power

counting) quadratically divergent. What is the mechanism of their

cancellation? Naturalness problem.

Only the second problem will be discussed.

Consider first theories without gravity
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Hierarchy problem and the mass of new

particles

Theories with just one scale (like the SM, apart from the problem

with Landau poles) - no any hierarchy problem, in-spite of

quadratic divergences. All physical masses are of the same order.

The UV cutoff is an unphysical quantity.

Theories with several mass scales, such as GUTs may have a

hierarchy problem: for MGUT ≫ MH one has to choose

carefully counter-terms up to

N ≃ log(M2
GUT/M

2
W )/ log(π/αW ) ≃ 13 loop level to get

MH ≪ MGUT ! This is enormous fine-tuning and is an argument

for existing of new physics right above the EW scale, if one insists

that there is the GUT scale MGUT ≪ MP ≃ 1019 GeV.

New particles with masses below Fermi scale:

Do not lead to any hierarchy problem
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Possible solutions

Compensation of divergent diagrams by new particles at TeV

scale (supersymmetry, composite Higgs boson, large extra

dimensions). Consequence: new physics at the LHC.

This solution is now challenged by experiments: no signs of new

physics at the LHC, no indication of wimps, no rare processes that

are not consistent with predictions of the SM.

There are no particles with masses between the Planck scale and

the Fermi scale. There is no Grand Unification or it happens at the

Planck scale (easy to realize with higher-dimensional operators).

Consistent with all experiments
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Theory with gravity

The gravity scale MP ≫ MH . Hierarchy problem? Not necessarily:

MH is the mass of the particle but MP is associated with the strength

of the gravitational interaction. The graviton is massless.

Perturbative computations of gravitational corrections to the Higgs

mass in scale-invariant regularisation such as dimensional

regularisation: all corrections are suppressed by MP , and there are no

corrections proportional to MP !

What happens non-perturbatively is an open question.

So, there may be no problem of stability of the Higgs mass against

radiative correction, only the problem why MH ≪ MP remains.
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Cosmological constant problems

and the scale of new physics
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Quadratic and quartic divergences

One can hear sometimes: since the quantum corrections MH diverge

as Λ2, one must introduce new physics which cancels these

divergences, and that new physics should appear close to the EW

scale.

Apply this argument to the vacuum energy ǫvac(quartically divergent):

necessity of new physics at energies larger than ǫ1/4vac ≃ 10−3 eV?

Since this is not observed, we should either conclude that the case of

quartic divergences is very much different from the case of quadratic

divergences, or accept that this type of logic can be wrong.

In fact, besides the problem of Landau poles, the EW theory itself is

known to be a perfectly valid theory without any new physics!
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Strong CP problem and the scale

of new physics
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Strong CP-problem

Invisible axion solution to strong CP-problem: Peccei-Quinn scale is

bounded from above and below by cosmology and astrophysics to be

in the region 108 GeV <∼MPQ<∼1012 GeV.

New intermediate scale ? Not necessarily:

Strong CP-problem is essentially related to the topology of space. It

appears only if the space is continuous and has non-trivial topological

mapping onto 3-sphere.

Is there space at all at short distances if gravity is included?

Is the topology of space always non-trivial?
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Topology

If extra dimensions have topology such that the mapping

D − dim Space → S3

is trivial no θ angle exists! Planck scale compactification is sufficient -

the solution to the strong CP-problem may occur at MPl (Khlebnikov,

M.S., 1988, 2004)
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2 + 1 U(1) example, brane-world

2 π jump

BRANE

φ > 0

φ < 0

Maxwell equations do not admit

existence of source-less static

electric field.

Brane-world compactification,

S2 → U(1) = S1 - trivial map-

ping → no N -vacua → no θ

vacua.

Extra dimensions are not seen if

we live on a brane.

Major ingredients:

(i) compactness of the space

(ii) non-factorizable geometry

KIAS, 15 November 2013 – p. 17



Higgs mass and the scale of new

physics
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The Standard Model of particle interactions is in great shape: no

convincing deviations from it were seen in any of accelerator

experiments

The discovery the Higgs boson with the mass 125 − 126 GeV has

been made recently by Atlas and CMS collaborations at LHC.
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The main message from the LHC: SM is
a consistent effective theory all the way
up to the Planck scale

No signs of new physics beyond the SM are seen

MH < 175 GeV : SM is a weakly coupled theory up to Planck

energies

MH > 111 GeV: Our EW vacuum is stable or metastable with a

lifetime greatly exceeding the Universe age. Espinosa et al
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The mass of the Higgs boson is very close to the stability bound on the

Higgs mass∗ (95’), to the Higgs inflation bound∗∗ (08’), and to

asymptotic safety value for MH
∗∗∗ (09’):

Mcrit = [129.3+
yt(Mt) − 0.9361

0.0058
×2.0−

αs(MZ) − 0.1184

0.0007
×0.5] GeV

yt(Mt) - top Yukawa in MS scheme

Matching at EW scale Central value theor. error

Bezrukov et al, O(ααs) 129.4 GeV 1.0 GeV

Degrassi et al, O(ααs, y
2

t
αs, λ

2, λαs) 129.6 GeV 0.7 GeV

Buttazzo et al, complete 2-loop 129.3 GeV 0.07 GeV

Chetyrkin et al, Mihaila et al, Bednyakov et al, 3 loop running to high energies

Fermi Planck

φ

V

Fermi Planck

φ

V

Fermi Planck

φ

V

stability

metastability 
M crit

∗ Froggatt, Nielsen

∗∗ Bezrukov et al,

De Simone et al

∗∗∗ Wetterich, MS
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What does it mean for for
the scale of new physics, if

cosmological considerations
are included?
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Two possibilities

Higgs self coupling crosses zero at energy scale Mλ ≪ MP .

Mλ can be as “small” as 108 GeV.

The Universe after inflation finds itself in our vacuum,

reheating temperature is below Mλ. Example - R2 inflation

Gorbunov, Panin;....

Some kind of new physics makes our vacuum unique. Giudice

et al,Hyun Min Lee, Lebedev et al, Barroso et al, Baek et al.,

Datta et al., Anchordoqui et al.,...

In both cases the scale of new physics is around Mλ ≪ MP

or

Higgs self coupling never crosses zero or does that close to the

Planck scale. Then no new physics at high energies is needed.
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We do not know which possibility is realised!
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Λ

Higgs mass Mh=125.3±0.6 GeV

errors in yt: theory + experiment

Tevatron: Mt = 173.2 ± 0.51 ± 0.71 GeV

ATLAS and CMS: Mt = 173.4 ± 0.4 ± 0.9 GeV

αs = 0.1184 ± 0.0007
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Main uncertainty - top Yukawa coupling.

1 GeV experimental error in Mt leads to 2 GeV error in Mcrit.

Perturbation theory, O(α4
s). Estimate of Kataev and Kim:

δyt/yt ≃ −750(αs/π)
4 ≃ −0.0015, δMcrit ≃ −0.5 GeV

Non-perturbative QCD effects, δMt ≃ ±ΛQCD ≃ ±300 MeV,

δMcrit ≃ ±0.6 GeV

Alekhin et al. Theoretically clean is the extraction of yt from tt̄

cross-section. However, the experimental errors in pp̄ → tt̄ + X

are quite large, leading to δMt ≃ ±2.8 GeV, δMcrit ≃ ±5.6

GeV.

Precision measurements of mH , yt and αs are needed.
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Suppose that in fact MH = Mcrit.

This was a prediction of the Higgs mass from asymptotic safety of the

SM (Wetterich, MS) due to gravity. AS requirement leads to two

conditions:

λ(µ0) = 0, βSM
λ (µ0) = 0

and require that

µ0 determined by the EW physics gives
the Planck scale, µ0 ≃ MP !
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This relation is generically spoiled if new

physics exists between the Fermi and

Planck scales.

⇓
Argument in favour of absence of new
physics scales between Fermi and
Planck.
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Cosmological inflation and the

scale of new physics
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Can we get the mass of the inflaton from the theory of inflation?
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Can we get the mass of the inflaton from the theory of inflation?

No

Example: Chaotic inflation

Take the inflaton potential in the simplest form

V (φ) =
1

2
m2φ2 +

λ

4
φ4

and add non-minimal coupling of the inflaton to gravity,

ξφ2R

KIAS, 15 November 2013 – p. 29



Inflation works for any scalar mass from 0 to 1013 GeV and perfectly

agrees with observations
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Moreover, we do not need any new particle at all to make the Universe

flat, homogeneous, and isotropic, and produce the necessary

spectrum of fluctuations for structure formation Bezrukov, MS :

Higgs inflation
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non-minimal coupling of Higgs field to
gravity

SG =

∫

d4x
√

−g

{

−
M2

P

2
R −

ξh2

2
R

}

Jordan, Feynman, Brans, Dicke,...

Consider large Higgs fields h.

Gravity strength: Meff
P =

√

M2
P + ξh2 ∝ h

All particle masses are ∝ h

For h > MP√
ξ

(classical) physics is the same (MW /Meff
P does not

depend on h)!

Existence of effective flat direction, necessary for successful inflation.
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Potential in Einstein frame

0

λM4/ξ2/16

λM4/ξ2/4

U(χ)

0 χend χCOBE χ

0

λ v4/4

0 v

R
eh

ea
tin

g

Standard Model

χ - canonically normalized scalar field in Einstein frame.
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Inflation and the Higgs mass

Radiative corrections to inflationary potential: Higgs inflation works

only for λ(MP/
√
ξ) > 0. Numerically, MH > Mcrit with extra

theoretical uncertainty of δMH ∼ 1 GeV.

MH > Mcrit MH < Mcrit

Fermi Planck Fermi Planck

φ φ

VV

Analysis of higher dimensional operators and radiative corrections:

Higgs inflation occurs in the weak coupling regime and is

self-consistent. Bezrukov et al KIAS, 15 November 2013 – p. 34



Inflaton potential and observations

If inflaton potential is known one can make predictions and compare

them with observations.

δT/T at the WMAP normalization scale ∼ 500 Mpc.

The value of spectral index ns of scalar density perturbations

〈

δT (x)

T

δT (y)

T

〉

∝
∫

d3k

k3
eik(x−y)kns−1

The amplitude of tensor perturbations r = δρs

δρt

These numbers can be extracted from WMAP observations of cosmic

microwave background. Higgs inflation: one new parameter, ξ =⇒ two

predictions. From WMAP normalization ξ can be as small as ∼ 700.
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CMB parameters—spectrum and tensor

modes
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Treh ∼ 1013−14 GeV, N ≃ 58

Perturbations are Gaussian, in accordance with Planck.
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Baryon asymmetry of the

universe and the scale of new

physics
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Baryon asymmetry of the Universe I

Popular mechanism for baryogenesis:

Electroweak baryogenesis. Idea (Cohen, Kaplan, Nelson): at high

temperatures we are in the symmetric phase of the EW theory.

During the universe cooling the first order EW phase transition

(PT) goes through nucleation of bubbles of the new (Higgs)

phase. Scattering of different particles on the domain walls leads

to separation of baryon number and due to sphalerons to baryon

asymmetry.

Challenged, but still possible in the MSSM: light stop is required for

first order EW phase transition. Curtin et al, Cohen et al, Carena et al,

Morrissey et al,...
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Baryon asymmetry of the Universe II

Another popular mechanism for baryogenesis:

Thermal leptogenesis. Idea (Fukugita, Yanagida): superheavy

Majorana leptons with the mass ∼ 1010 GeV decay and produce

lepton asymmetry, which is converted to baryon asymmetry by

sphalerons.

Necessity of heavy particles =⇒ large radiative corrections to the

Higgs mass (hierarchy problem) =⇒ SUSY at the electroweak scale.

However, no signs of SUSY are seen... Way out: resonant

leptogenesis with degenerate Majorana leptons with masses 1 TeV

Pilaftsis et al

Thermal leptogenesis cannot be disproved, but will be fine tuned

without new physics at Fermi scale KIAS, 15 November 2013 – p. 39



So, if the next LHC runs will confirm the
SM, popular mechanisms for
baryogenesis will be disfavored.

How the baryon asymmetry of the

Universe has emerged?

Possibility: new physics below the Fermi
scale
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Dark matter and the scale of new

physics

KIAS, 15 November 2013 – p. 41



Dark matter

Most popular DM candidate: WIMP, associated with new physics

solving the hierarchy problem at the electroweak scale. If no new

physics is discovered at the LHC, this candidate is not that attractive

anymore...

What is the Dark matter particle?

Possibility: new physics below the Fermi
scale
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Neutrino masses and the scale of

new physics
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Most probably, origin of neutrino masses - existence of new unseen

particles; complete theory is renormalisable
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Most probably, origin of neutrino masses - existence of new unseen

particles; complete theory is renormalisable

Singlet Majorana fermions - effective contribution to neutrino mass

Higgs triplet with hypercharge 2 - direct contribution to neutrino

mass

A combination of the two mechanisms

...

KIAS, 15 November 2013 – p. 44



Most probably, origin of neutrino masses - existence of new unseen

particles; complete theory is renormalisable

Singlet Majorana fermions - effective contribution to neutrino mass

Higgs triplet with hypercharge 2 - direct contribution to neutrino

mass

A combination of the two mechanisms

...

φ φ

ν ν

φ φ

ν ν

N

?
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Realisation: SM + 3 right-handed

neutrinos

Most general renormalizable Lagrangian

Lsee−saw = LSM + N̄Ii∂µγ
µNI − FαI L̄αNIΦ −

MI

2
N̄c

INI + h.c.,

Extra coupling constants:

3 Majorana masses of new neutral fermions Ni,

15 new Yukawa couplings in the leptonic sector

(3 Dirac neutrino masses MD = FαIv, 6 mixing angles and 6 CP-

violating phases),

18 new parameters in total. The number of parameters is almost doubled in

comparison with the SM.

Y 2 = Trace[F †F ]
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New mass scale and Yukawas
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Physics case for different choices
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New physics below the Fermi scale: the νMSM
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Role of N1 with mass in keV region: dark matter. Search - with the use

of X-ray telescopes

Role of N2, N3 with mass in 100 MeV – GeV region: “give” masses to

neutrinos and produce baryon asymmetry of the Universe. Search -

intensity and precision frontier, SPS at CERN.
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Why make it simple when you can make it complicated?
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Conclusions

KIAS, 15 November 2013 – p. 50



The answer to the question:

What is the scale of new physics?
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The answer to the question:

What is the scale of new physics?

Is not known,

and is not up to a theorist to decide!

It may be above the Fermi scale -

challenged by experiments

It may be below the Fermi scale but very
weakly coupled - consistent with
experiments

KIAS, 15 November 2013 – p. 51



Wish list

Higgs mass with highest possible precision (LHC, 200 MeV?)

Top Yukawa coupling with accuracy 5 × 10−4 (δMt ≃ 100 MeV)

(LHC? future e+e− collider?)

αs with uncertainty δαs ≃ 2 × 10−4

Stability of EW vacuum? Higgs inflation? Asymptotic safety?

Search for new particles producing baryon asymmetry of the

Universe (below the Fermi scale, possible experiment at

CERN-SPS?)
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Wish list, cont

Cosmological and astrophysical experiments, which can elucidate the

structure of the underlying theory.

To test Higgs inflation, and to distinguish it from R2 inflation and other

models:

Precision in spectral index ns of scalar perturbations at the level

of 10−3 (PRISM?)

Determination of tensor-to-scalar ratio down to values r ≃ 0.003

(COrE, PRISM?)

Determination of the running of the spectral index dns/dlogk

down to values 5 × 10−4 (SKA?).
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Wish list, cont

Dark matter

Search for radiative decays of DM particles N → γν, alternative

to WIMPS or axions with the help of high resolution X-ray

telescopes.

∗Prism: Polarized Radiation Imaging and Spectroscopy Mission
∗DES: The Dark Energy Survey
∗SKA: The Square Kilometer Array
∗COrE: The Cosmic Origins Explorer
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Back up slides
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Dark Matter candidate: N1

Yukawa couplings are small

→ N can be very stable.
N

ν
ν

ν
Z

Main decay mode: N → 3ν.

Subdominant radiative de-

cay channel: N → νγ.

e
±

W
∓

γ
W

∓

Ns ν

ν

For one flavour:

τN1
= 1014 years

(

10 keV

MN

)5
(

10−8

θ2
1

)

θ1 =
mD

MN

Γrad =
9αEM G2

F

256 · 4π4
sin2(2θ)M5

s
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Constraints on DM HNL N1

Stability. N1 must have a lifetime larger than that of the Universe

Production. N1 are created in the early Universe in reactions

ll̄ → νN1, qq̄ → νN1 etc. We should get correct DM

abundance

Structure formation. If N1 is too light it may have considerable

free streaming length and erase fluctuations on small scales. This

can be checked by the study of Lyman-α forest spectra of distant

quasars and structure of dwarf galaxies

X-rays. N1 decays radiatively, N1 → γν, producing a narrow line

which can be detected by X-ray telescopes (such as Chandra or

XMM-Newton). This line has not been seen yet
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How to find DM HNL?

Strategy: Use X-ray telescopes (such as Chandra and XMM Newton)

to look for a narrow γ line against astrophysical background. Choose

astrophysical objects for which:

The signal is maximal

The X-ray background is minimal

=⇒ Look at Milky Way and dwarf satellite galaxies

KIAS, 15 November 2013 – p. 59
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Baryon asymmetry

CP is non-conserved in the νMSM:

6 CP-violating phases in the lepton sector and

1 Kobayashi-Maskawa phase in the quark sector.

Deviations from thermal equilibrium:

very weakly coupled heavy neutral leptons.
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Constraints on BAU HNL N2,3

Baryon asymmetry generation: CP-violation in neutrino sector+singlet

fermion oscillations+sphalerons

BAU generation requires out of equilibrium: mixing angle of N2,3

to active neutrinos cannot be too large

Neutrino masses. Mixing angle of N2,3 to active neutrinos cannot

be too small

BBN. Decays of N2,3 must not spoil Big Bang Nucleosynthesis

Experiment. N2,3 have not been seen yet

KIAS, 15 November 2013 – p. 62
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Constraints on U2 coming from the baryon asymmetry of the Universe,

from the see-saw formula, from the big bang nucleosynthesis and

experimental searches. Left panel - normal hierarchy, right panel -

inverted hierarchy (Canetti, Drewes, Frossard, MS).
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Experimental signature

Two charged tracks from a common vertex, decay processes

N → µ+µ−ν, etc. (sensitivity U4 = U2 × U2)

First step: proton beam dump, creation of N in decays of K, D

or B mesons: U2

Second step: search for decays of N in a near detector, to collect

all Ns: U2

MN < MK : Any intense source of K-mesons (e.g. from

proton targets of PS.)

MN < MD: Best option: SPS beam + near detector

MN < MB: extremely hard

MN > MB: impossible
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Energy: 400 GeV, power: 750 kW

4.5 × 1013 protons per pulse (upgrade to 7 × 1013), every 6 s

CNGS: 4.5× 1019 protons on target per year (200 days, 55% machine

availability, 60% of the SPS supercycle)
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Proposal to Search for Heavy Neutral
Leptons at the SPS arXiv:1310.1762

W. Bonivento, A. Boyarsky, H. Dijkstra, U. Egede, M. Ferro-Luzzi, B.

Goddard, A. Golutvin, D. Gorbunov, R. Jacobsson, J. Panman, M.

Patel, O. Ruchayskiy, T. Ruf, N. Serra, M. Shaposhnikov, D. Treille
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Target

KIAS, 15 November 2013 – p. 67



Detector
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Sensitivity
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