
Project on the physics of Goldstone bosons in Condensed Matter Systems

(1) Number of Goldstone modes

The number of Goldstone modes of the symmetry broken system can be counted as the number

of lost d.o.f (or symmetry) due to the symmetry breaking from the original symmetry preserved

system.

(1) O(N) symmetry case: Imagine a freely rotating spin S⃗ in N-dimension space which has

O(N) symmetry. Count the total number of independent rotational axis (transformation) of a freely

rotating spin. Similarly count the number of the remaining independent rotational axis when the

spin is pointing to a specific direction (spontaneous symmetry breaking). Show the difference of

two numbers is N − 1.

(2) T(N) symmetry case: Imagine a freely moving particle in N-dimensional space (transla-

tional symmetry). Count how many independent translational d.o.f. the particle has. Imagine the

particle position is pinned on a specific position in the N-dimensional space. Count the number of

remaining independent translational d.o.f of the particle in this case. Find the difference of two

numbers (trivial example).

(2) Goldstone modes and Higgs modes

Consider the Lagrangian of the charged scalar field ψ(x) which is a complex number. Besides

the standard kinetic term we assume the famous Mexican hat potential V = r0|ψ(x)|2+ u0

2
|ψ(x)|4.

So with gµν = (+,−,−,−), we have

L = ∂µψ
∗(x)∂µψ(x)− r0[ψ

∗(x)ψ(x)]− u0
2
[ψ∗(x)ψ(x)]2 (1)

Derive the Eq. of motion for ψ(x) as

[∂µ∂
µ + r0 + u0|ψ(x)|2]ψ(x) = 0 (2)

Find the mean field solution of ψ(x) (meaning a constant solution ψ(x) = ψ0) of the above eq.

both when r0 > 0 and r0 < 0, respectively.

We are interested in the non-zero solution ψ(x) = ψ0 when r0 < 0. Expanding the above

Lagrangian with a small fluctuations η(x), ξ(x) around the mean field solution as ψ(x) = [ψ0 +
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η(x)]eiξ(x), find the equations of motion of the fluctuations as

∂µ∂
µξ(x) = 0 (3)

(∂µ∂
µ − 2r0)η(x) = 0 (4)

These results clearly show that ξ(x) is a massless Goldstone mode originating from phase

fluctuations and η(x) is a massive mode with a mass of 2r0. This massive mode itself is not

a symmetry restoring mode (not a Goldstone mode) but it is a smoking gun evidence for the

presence of the Higgs field ψ(x) which goes to a spontaneous symmetry breaking and called

Higgs boson.

(3) Anderson Higgs mechanism

It was discovered by several people in early 60th that the above found massless Goldstone

mode can be combined with the massless gauge modes to make the gauge modes massive. In the

phenomena of superconductivity, this is the exactly the mechanism for the Meissner effect (perfect

diamagnetism), meaning that external magnetic field can not penetrate into the superconducting

sample while it can propagate freely into ordinary metals.

In order to study this phenomena, introduce E&M fields to couple to the scalar field ψ(x). This

can be done by the minimal coupling (∂µ + ieAµ) as follows.

L = [(∂µ + ieAµ)ψ(x)]
∗[(∂µ + ieAµ)ψ(x)]− r0[ψ

∗(x)ψ(x)]− u0
2
[ψ∗(x)ψ(x)]2 − 1

4
FµνF

µν (5)

Again assume r0 < 0 and the non-zero mean field solution ψ(x) = ψ0, then expand the above

Lagrangian around ψ(x) = ψ0 substituting ψ(x) = [ψ0 + η(x)]eiξ(x). Now take a gauge transfor-

mation as follows

[ψ0 + η(x)]eiξ(x) → [ψ0 + η(x)] (6)

Aµ → Aµ +
1

e
∂µξ(x) = Ãµ (7)

Then you found that you can always eliminate ξ(x) field in the above Lagrangian. Therefore now

you don’t have Eq. of Motion for ξ(x), but show that Eq. of Motion for η(x) is the same as before

(Eq.(4)). Finally find the Eq. of motion for the gauge field Ãµ as

[∂µ∂
µ − 2e2

r0
u0

]Ãµ = 0 (8)

which clearly shows that the gauge fields Ãµ obtained a mass
√
2e2 r0

u0
.

2



(4) Gauge Invariance of the Meissner effect

In the original BCS theory, the Meissner effect is expressed as

Ji(q) = Kij(q)Aj(q), i = 1, 2, 3 (9)

and any non-zero value of Kij means the Meissner effect and the BCS theory evaluates Kij as

Kij = −e
2n

m
δij+ < BCS|ji(q)jj(−q)|BCS > (10)

The first term is the trivial diamagnetic term and the second term is the current-current correlation

function. In the BCS theory, the second term is trivially zero, hence the BCS theory immediately

achieves the Meissner effect. The problem is that Ji(q) = − e2n
m
δijAj(q) is gauge non-invariant.

Find out the general form of the Kij(q) which satisfy the gauge invariance as well as the conser-

vation law.

Also think about what is the requirement to change the BCS result <

BCS|ji(q)jj(−q)|BCS >= 0 in order to satisfy the gauge invariance. This problem was

elegantly resolved by Nambu among others using the generalized Ward identity.
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