

NIRMOS

: Near-Infrared Multiple Object Spectrograph for the GMT

(Fabricant et al., 2012)

이혜인(경희대), 정인태(연세대), 지인찬(연세대)

발표자 : 정인태

Introduction

- Near-Infrafed Multiple Object Spectrograph (NIRMOS)
- $\odot~NIRMOS: 0.9$ 2.5µm imager/spectrograph concept for the GMT

Parameter	Requirement	Goal	Notes
Wavelength Range	1 – 2.5µm	0.9 – 2.5µm	Coverage of a full band in a single exposure
Spectral Resolution	$R\phi \geq 1,500$	R=5000 with narrow slits	Baseline mode is expected to match GLAO image sizes
Multiplex Factor	> 100	-	For slit MOS mode
Field of View Slit MOS	20 arcmin ²	25 arcmin ²	
Field of View Imaging	5' x 5'	-	
Field of View Fiber MOS	Full 20' diameter field		Only expected to operate in the J & H bands
Image Quality	0.15" 80%EE	-	Don't degrade images from telescope/site by more than 5%
Velocity Stability	< 0.1	-	Flexure in units of spectral resolution element per hour
Throughput	$\geq 20\%$ at 2.2 μm	≥ 30% at blaze peaks	Exclusive of slit losses, telescope and atmosphere

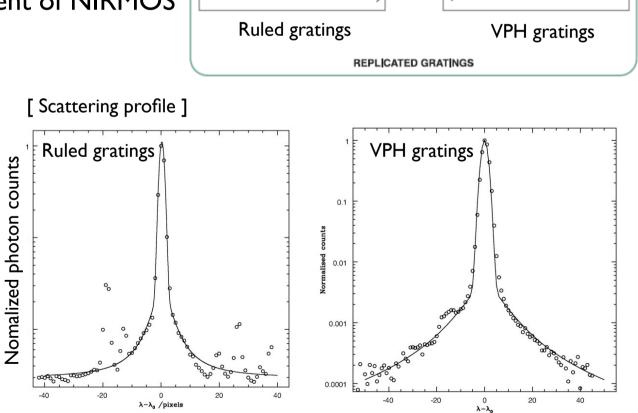
[Detailed requirements of the GMT project office]

Optical Design

- Use of <u>refractive</u> optics
 - I. reflective optics
 - a. simple, achromatic nature
 - b. impossible for wide-field spectroscopic design & fast camera
 - 2. more feasible refractive optics
- Material

; CaF2, infrared fused quartz, S-TIM28 - only suited for large telescopes

• Aspheric surface


; expensive, but better performance in scattered light and throughput

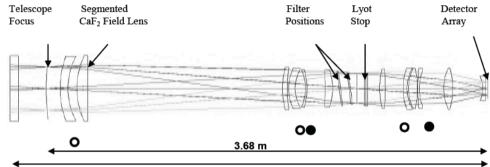
Scattered light

- I. potential problems in IR spectroscopy
- 2. sources light scattered from gratings and detectors
- 3.3% of sky background in J Band & 8% of sky background in H Band ; can be reduced by using VPH grating

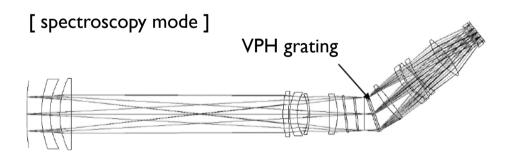
Optical Design

- Volume Phase Holographic(VPH) transmission gratings
 - I. two transmission gratings
 ; ruled gratings, holographic gratings
 2. cryogenic environment of NIRMOS
 - ; holographic gratings
 - 3.VPH gratingsa. higher efficiencyb. lower scattering

Aluminum Coating


Epoxy Laver

Polished Substrate


Optical Design

Parameter	Value	
FOV	42 arcmin ⁻²	
Multiplex Capability	~ 80 with 5 inches long slits	
Scale at Detector	0.049 arcsec / pixel	
Collimated Beam Diameter	270 mm	
Collimator Focal Length	2200 mm	
Camera Focal Length	665 mm	
Camera Focal Ratio	f/2.4	

[imaging mode]

4.01 m

Multiplex advantage & sensitivity

[NIRMOS exposure time calculator and spectral simulator]

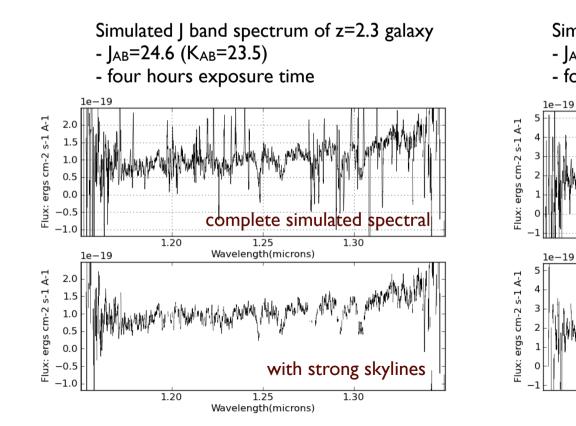
SAO Exposure Time Calculator - Version 0.5				
Instrument & Mode NIRMOS_SPEC_YJ - Spectrum Type Mid-z-Gal vandesande_z180 - Boxcar Smooth Pixels 10				
Angstroms per pixel : 0.0495 Arcsec per pixel : 0.451 File AB Mag 20.42				
Redshift 1.8 AB Mag in observed band 23.0 Source Effective Radius 0.0 arcsec Transmission Cut 0.75				
Exposure Time 3600 sec Bkgd exp per object exp 1 Seeing 0.4 arcsec Subexposure Time 300 sec Moon Phase Dark - Aperture Type Square Ap Width 0.5 arcsec Plot Spectrum R Mask Sky				
Aperture Type Square Ap Width 0.5 arcsec Plot Flux Bkgd Ap Type Square Bkgd Ap Width 0.5 arcsec Retrieve Data Table				
SNR / Res Element vs. Wavelength (microns)				
20 10 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35				
Flux (ergs cm ⁻² s ⁻¹ Å ⁻¹) vs. Wavelength (microns)	Noise source - atmospheric emission lines - sky background - dark current - read noise			

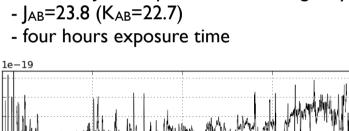
(<u>http://hopper.si.edu/saoetc/sao-etc</u>)

Multiplex advantage & sensitivity

[Galaxy counts with photometric z>2 from Chandra Deep Field South from Franx]

K _{AB}	z>2 galaxies per sq. arcmin	z>2 galaxies in 42 sq. arcmin. NIRMOS field
22.7	1.0	42
23	1.7	71
23.5	2.6	109


Multiplex Capability ~ 80 with 5 inches long slits


complete simulated spectral

1.30

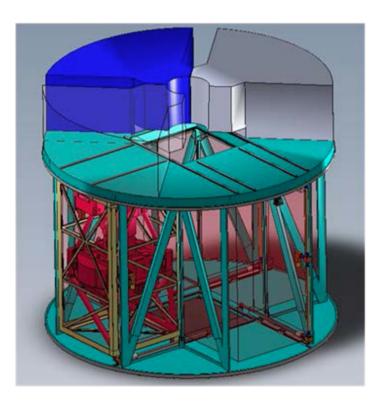
with strong skylines

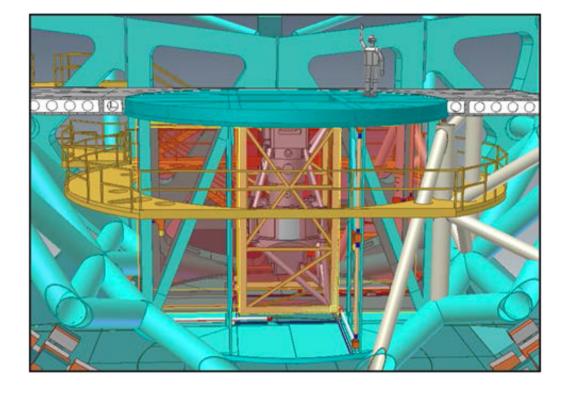
1.30

1.25

Wavelength(microns)

1.25

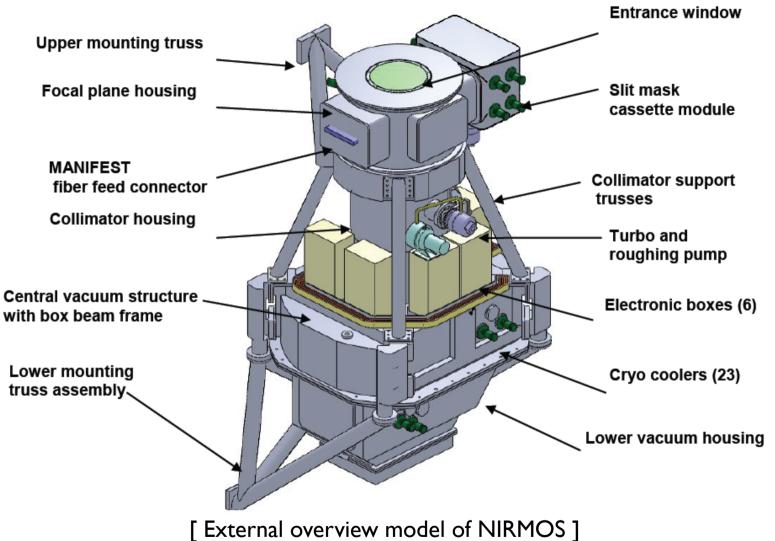

Wavelength(microns)


1.20

1.20

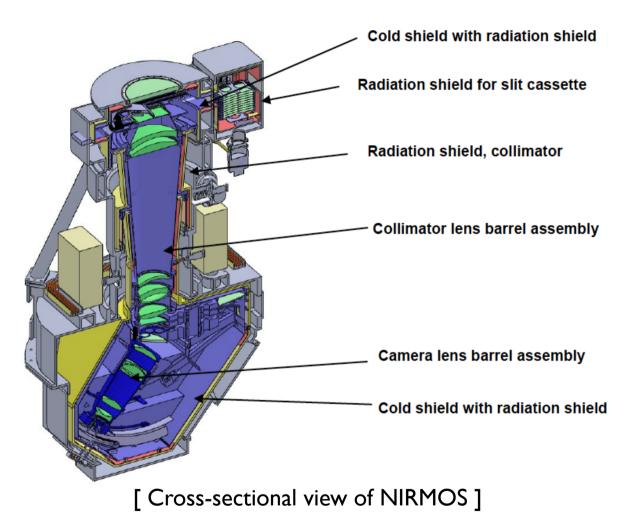
Simulated | band spectrum of z=2.3 galaxy

Mechanical overview



[NIRMOS within the rotating Gregorian Instrument Assembly (GIA)]

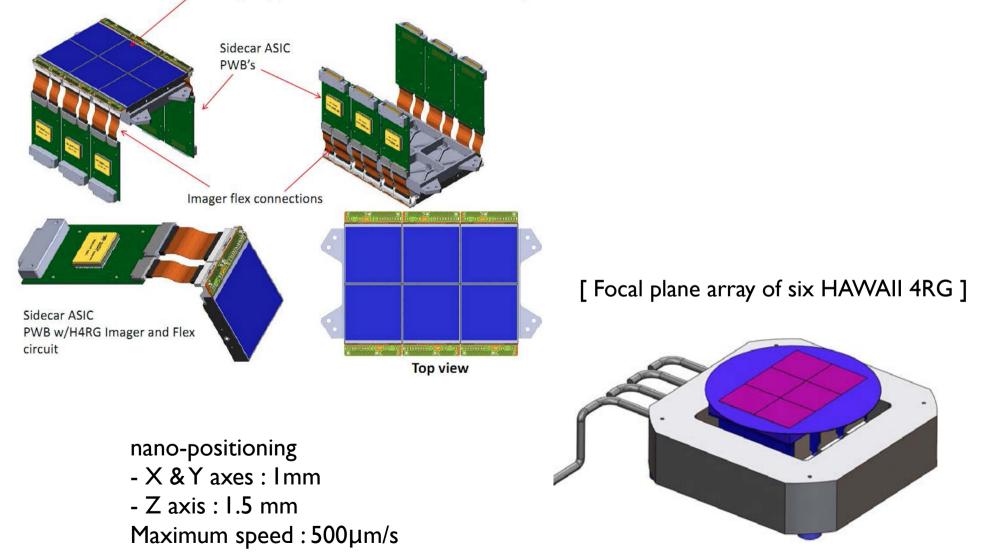
[GIA location within the instrument platform]


 \odot NIRMOS : a large cryogenic instrument with a total mass of ~ 9,000kg

Mechanical overview

• The NIRMOS electronics boxes provide the mechanism control, cryogenic control, temperature control, vacuum control, detector support, etc.

Mechanical overview

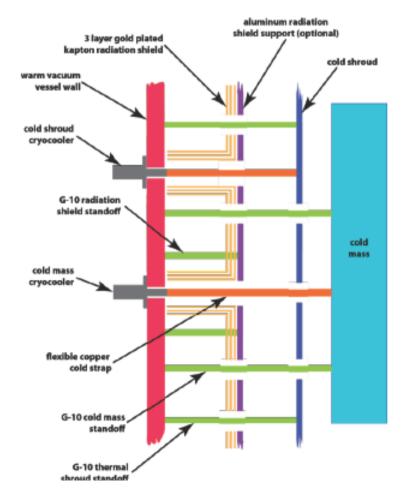

• The NIRMOS optics are completely baffled using cold shield.

- \rightarrow the temperature of the optics is ~ 120K
- A radiation shield consists of 3 layers of gold coated Kapton.

Detector assembly and flexible control

[Detector assembly]

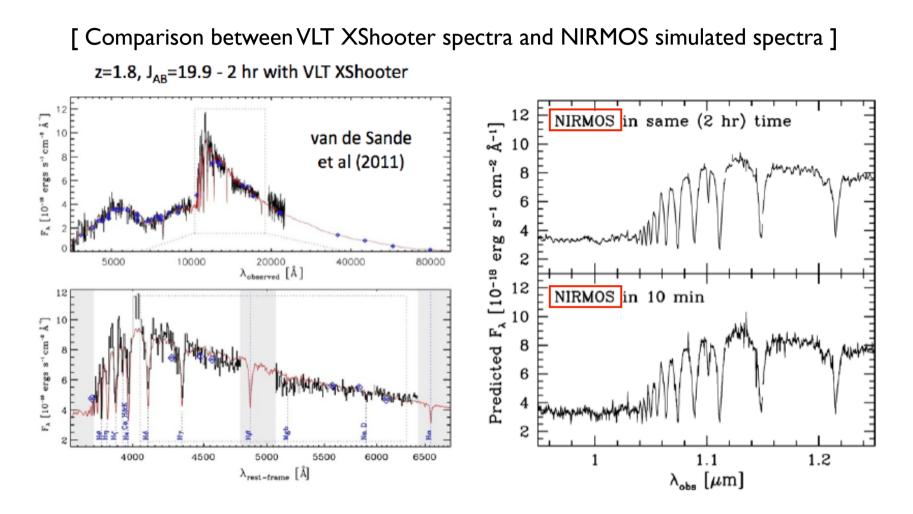
Hawaii 4RG Imagers (6) Detailed Focal Plane assembly



Thermal design

• Cryogenic temperatures : cooling 1,530 kg, toward 120 K

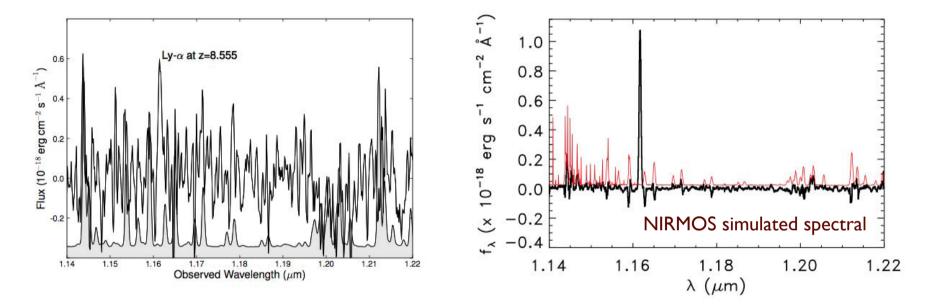
transient cool-down (293K \rightarrow 120K, 7days)


& warm-up (120K \rightarrow 293K, 5days)

Discussion - GMT Science with NIRMOS

- The near-infrared(NIR) play a central role in the science programs for ELTs
 - At z ~ 2.5 (the peak of <u>the universal star formation</u>), optical emission line tracers are shifted into the NIR.
 - 2) Spectroscopy of <u>high-z sources</u> is very important for the measurement of cosmic reionization.
 - a) Ly- α emission from the first galaxies at z>7
 - b) the afterglows of gamma ray bursts at z>7

Discussion - Dynamic masses



• The GMT+NIRMOS will allow the measurement with <u>high confidence</u> in massive galaxies, and the observation of L^{*} galaxies at t $z\sim 2$.

Ref.) <u>www.gmto.org/Resources/GMT-SCI-REF-00483_2_GMT_Science_Book.pdf</u>)

Discussion - High redshift galaxies

[Comparison btwVLT/SINFONI spectrum of the z=8.56 galaxy and simulated spectrum]

• The GMT/NIRMOS will allow us to confirm the redshifts and high quality spectra of the brightest galaxies at z>7.

• It will be possible to obtain the <u>UV luminosity function</u> for high-z galaxies.

Ref.) <u>www.gmto.org/Resources/GMT-SCI-REF-00483_2_GMT_Science_Book.pdf</u>)

Thank you