Modeling interacting galaxies seen in galaxy surveys

Jeong-Sun Hwang (KIAS)

The 2nd Survey Science Group Workshop

2013. Feb. 13 – 16, High1 Resort

Interacting Galaxies Seen in SDSS

From Park, Choi, & Gott (2008)

Evolution of Galaxy Morphology

Park, Choi, & Gott (2008):

- analyzed volume limited samples from the SDSS data (DR4plus)

Name	Absolute Magnitude	Redshift	Distance ^a	Galaxies
D3	$M_r < -19.0$	0.025 < z < 0.06869	74.6 < R < 203.0	49,571
D4	$M_r < -19.5$	0.025 < z < 0.08588	74.6 < R < 252.9	74,688
D5	$M_r < -20.0$	0.025 < z < 0.10713	74.6 < R < 314.0	80,479

- found that galaxy morphology depends on the following environmental factors
 - \ast small-scale density due to the nearest neighbor ρ_n
 - * morphology of the nearest neighbor
 - \ast large-scale background density ρ_{20}

Evolution of Galaxy Morphology

from Park, Choi, & Gott (2008):

f_E = Probability for a (target) galaxy to be an early-type r_{nearest} = distance between a target galaxy & its nearest neighbor

Evolution of Galaxy Morphology

from Park, Choi, & Gott (2008):

f_E = Probability for a (target) galaxy to be an early-type r_{nearest} = distance between a target galaxy & its nearest neighbor

Initial Galaxy Models

Elliptical galaxy: E (bulge + DM halo) EHi (bulge +DM halo+ gas halo) Disk galaxy: D (DM halo + bulge + star disk + gas disk) DHi (DM halo + bulge + star disk + gas disk + gas halo) Mass in units of 10^{10} M_{\odot} E: $M_{tot} = M_{bulge} + M_{DM}$ = 12 + 240 = 256 EHi : Mtot = Mbulge + MDM + Mghalo <u>= 12</u> + <u>237.6</u> + <u>2.4</u> = <u>256</u> D: Mtot = Mbulge + Msdisk + Mgdisk + MDM <u>= 1</u> + 4.4 + 0.6 + 120 = 126 DHi: Mtot = Mbulge + Msdisk + Mgdisk + MDM + Mghalo = 1 + 4.4 + 0.6 + 118.8 + 1.2 = 126

Codes used: ZENO for ICs & GADGET-3 (early version) for simulations (refer to Hwang, Park, & Choi 2013)

Simulations

3 test runs:

G1–G2	G1	G1	G2	G2	
	$r_0 \; (\mathrm{kpc})$	$v_0 \; (\mathrm{km \; s^{-1}})$	$r_0 \; (\mathrm{kpc})$	$v_0 \; ({\rm km \; s^{-1}})$	1st closest approach
E-D	0, 0, 0	0, 0, 0	-1200, 250, 0	200, 0, 0	$95.65~{\rm kpc}$ at $4.85~{\rm Gyr}$
EHi-DHi	0, 0, 0	0, 0, 0	-1200, 250, 0	200, 0, 0	$95.93~{\rm kpc}$ at $4.85~{\rm Gyr}$
EHi–DHi fast	0, 0, 0	0, 0, 0	-1200, 100, 0	1500, 0, 0	$95.91~{\rm kpc}$ at $4.85~{\rm Gyr}$

Run 1: E-D

- w/o gas halo
- initial impact parameter & relative velocity: 250 kpc, 200 km/s
- 1st closest approach: 95.65 kpc at 4.85 Gyr

Run 2: EHi-DHi

- with gas halo
- initial impact parameter & relative velocity: 250 kpc, 200 km/s
- 1st closest approach: 95.93 kpc at 4.85 Gyr

Run 3: EHi-DHi fast

- with gas halo
- initial impact parameter & relative velocity: 100 kpc, 1500 km/s
- 1st closest approach: 95.91 kpc at 4.85 Gyr

Star Formation Rates

More Work To Do

Changes of physical quantities:

- profile of each component, SFRs, mass transfer
- differences between E-D runs & EHi-DHi runs

More runs with varying

- initial impact parameter, relative velocity, tilt, etc
- mass, gas fraction in the disk & halo
- initial spins of the gas disk and gas halo

Thank you!

