Large Area Surveys of the Near-Infrared Sky with MIRIS

Jeonghyun Pyo¹ MIRIS Team

¹Korean Astronomy and Space Science Institute (KASI), KOREA

The 2nd Survey Science Group Workshop 2013 Feb. 13–16 @ High1 Resort

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Members of MIRIS Team

Development Team

한원용(PI), 이대희(PM), 가능현, 김일중, 남욱원, 문봉곤, 박성준, 박영식, 박원기, 육인수, 이덕행, 이미현, 이성호, 이창희, 정응섭, 차상목, 표정현 (이상 천문연), 진호 (경희대), T. Matsumoto (ASIAA, ISAS/JAXA)

Science Advisers (SOC)

박수종 (경희대), 박창범 (KIAS), 선광일 (천문연), 안경진 (조선대), 윤태석 (경북대), 이재우 (세종대), 이형목, 임명신 (이상 서울대), 조정연 (충남대), T. Matsumoto (ASIAA, ISAS/JAXA)

Collaborating Institutions

ISAS/JAXA

Cosmic Infrared Background (CIB)

- : Remnant of the first stars (Pop. III stars)
 - Absolute brightness
 - Fluctuation

• Pa α Diffuse Emission of the Galaxy

- Study of the warm ionized medium (WIM)
- Comparison with $H\alpha$ and far-IR maps

 \leftarrow Survey of the Galactic plane (GP) with narrow-band Pa α filter

Cosmic Infrared Background (CIB)

- : Remnant of the first stars (Pop. III stars)
 - Absolute brightness
 - Fluctuation

- Survey of the north ecliptic pole (NEP) at I & H bands

ightarrow Seasonal variation of the zodiacal light

• Pa α Diffuse Emission of the Galaxy

- Study of the warm ionized medium (WIM)
- Comparison with $H\alpha$ and far-IR maps

 \leftarrow Survey of the Galactic plane (GP) with narrow-band Pa α filter

Cosmic Infrared Background (CIB)

- : Remnant of the first stars (Pop. III stars)
 - Absolute brightness
 - Fluctuation
- \leftarrow Survey of the north ecliptic pole (NEP) at I & H bands
 - → Seasonal variation of the zodiacal light
- Paα Diffuse Emission of the Galaxy
 - Study of the warm ionized medium (WIM)
 - Comparison with $H\alpha$ and far-IR maps

 \leftarrow Survey of the Galactic plane (GP) with narrow-band Pa α filter

Cosmic Infrared Background (CIB)

- : Remnant of the first stars (Pop. III stars)
 - Absolute brightness
 - Fluctuation
- ← Survey of the north ecliptic pole (NEP) at I & H bands
 - Seasonal variation of the zodiacal light

• Pa α Diffuse Emission of the Galaxy

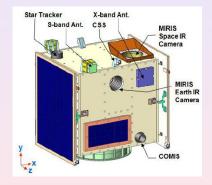
- Study of the warm ionized medium (WIM)
- Comparison with $H\alpha$ and far-IR maps

 \leftarrow Survey of the Galactic plane (GP) with narrow-band Pa α filter

Cosmic Infrared Background (CIB)

- : Remnant of the first stars (Pop. III stars)
 - Absolute brightness
 - Fluctuation
- ← Survey of the north ecliptic pole (NEP) at I & H bands
 - Seasonal variation of the zodiacal light

• Pa α Diffuse Emission of the Galaxy


- Study of the warm ionized medium (WIM)
- Comparison with $H\alpha$ and far-IR maps

 \leftarrow Survey of the Galactic plane (GP) with narrow-band Pa α filter

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Instrument » Satellite

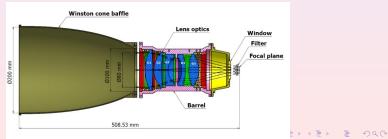
- MIRIS = Multipurpose InfraRed Imaging System
- Main payload of STSAT-3
- **SOC** + EOC
- Orbit [TBD]
 - Altitude $\sim 620 \, \text{km}$
 - Eccentricity 0.002
 - Inclination 97^o.8
 - LTAN 22 o'clock

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● の Q @

Sciences	Instrument	NEP Survey	GP Survey	Status & Schedule
	00			

Instrument » Space Observation Camera (SOC)

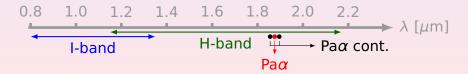
Aperture 80 mm


- **Pixel scale** 51["].6 × 51["].6
- **Field of view** 3°.67 × 3°.67

Temperature 180–200 K (telescope, passive cooling), 100 K (sensor, cryo. motor)

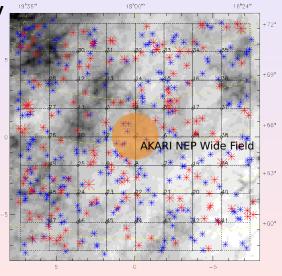
Filters • Wide: I (1.05 μm), H (1.6 μm)

• Narrow: Pa α line (1.876 μ m), Pa α cont.


Blank

Sciences	Instrument ○●	NEP Survey	GP Survey	Status & Schedule
Instru	ment » sp	ace Observat	ion Camera (SOC)

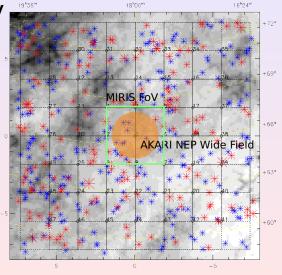
- Aperture 80 mm
- **Pixel scale** 51".6 × 51".6
- Field of view $3^{\circ}.67 \times 3^{\circ}.67$
- **Temperature** 180–200 K (telescope, passive cooling), 100 K (sensor, cryo. motor)
 - **Filters** Wide: I ($1.05 \mu m$), H ($1.6 \mu m$)
 - Narrow: Paα line (1.876 μm), Paα cont.
 Blank


▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Sciences	Instrument	NEP Survey	GP Survey	Status & Schedule

Observation Strategy

- Filters: I & H bands
- 1 month (dedicated phase) + 2 months
- $10^{\circ} \times 10^{\circ}$ area centered at NEP
- 7 × 7 fields w/ 50% overlap
- \sim 10 min. exposure / field

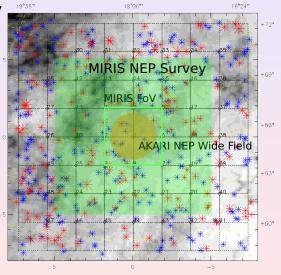


・ロト・日本・日本・日本・日本・日本

Sciences	Instrument	NEP Survey	GP Survey	Status & Schedule

Observation Strategy

- Filters: I & H bands
- 1 month (dedicated phase) + 2 months
- $10^{\circ} \times 10^{\circ}$ area centered at NEP
- 7 × 7 fields w/ 50% overlap
- \sim 10 min. exposure / field

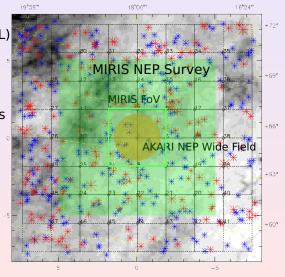


◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Sciences	Instrument	NEP Survey	GP Survey	Status & Schedule

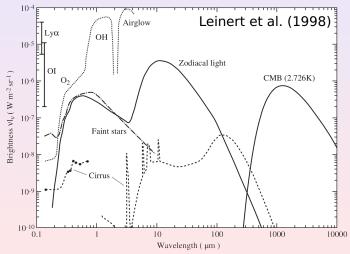
Observation Strategy

- Filters: I & H bands
- 1 month (dedicated phase) + 2 months
- $10^{\circ} \times 10^{\circ}$ area centered at NEP
- 7×7 fields w/ 50% overlap
- \sim 10 min. exposure / field

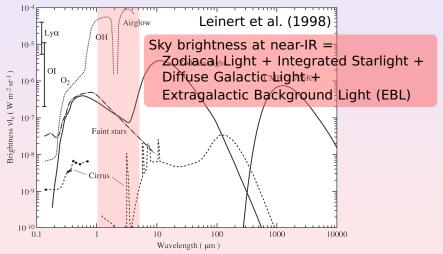


・ロト・西ト・ヨト・ヨー シック

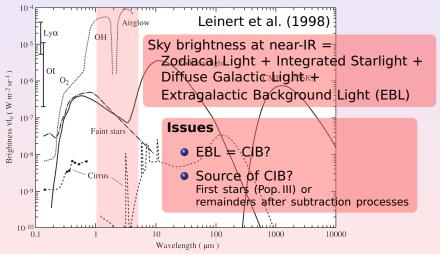
Sciences	Instrument	NEP Survey	GP Survey	Status & Schedule


Why NEP?

- Low zodiacal light (ZL) brightness
- Frequent observation opportunities
- Previous observations (AKARI, Herschel, CIBER, ...)


・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

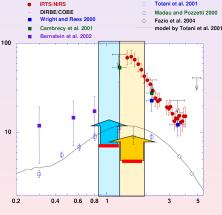
Sciences—Cosmic Infrared Background (CIB)



▲□▶ ▲□▶ ▲臣▶ ▲臣▶ = 臣 - のへで

Sciences—Cosmic Infrared Background (CIB)

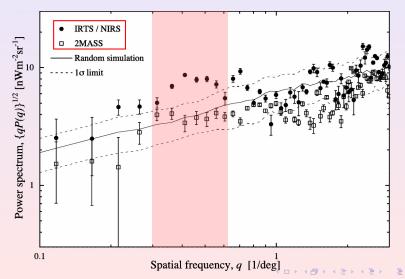
Sciences—Cosmic Infrared Background (CIB)

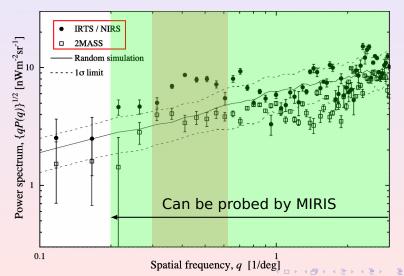

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – のへ⊙

nW/m²/sr)

NEP Survey with Wide Band Filters

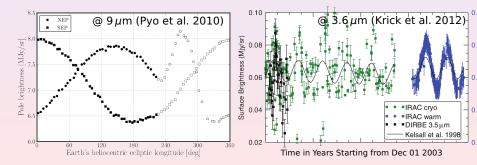
Sciences—Absolute Brightness of CIB


- Key to study the origin of CIB
- Expected sensitivities of MIRIS observations $(3\sigma, \text{ instrumental noise})$
 - I-band: 18.1 AB mag.
 - H-band: 19.0 AB mag.
- Confusion-limited observation Surface brightness
 - Confusion limit: 15.1 mag.
- Find the peak of CIB spectrum

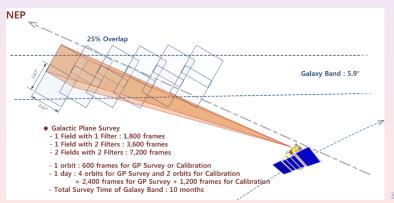

Wavelength (um)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

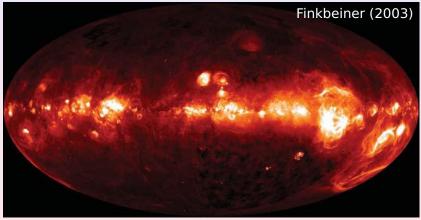
Sciences—Large-Scale Fluctuation of CIB


Sciences—Large-Scale Fluctuation of CIB

Sciences	Instrument	NEP Survey	GP Survey	Status & Schedule


Auxiliary Observations

- : Observe the north and south ecliptic poles once a day
 - Monitoring and calibration of the detector condition
 - Seasonal variation of background brightness due to ZL
 → Useful for ZL study, but no good data in near-IR so far


Sciences	Instrument	NEP Survey	GP Survey	Status & Schedule

- Cover 360° along longitude and within $\pm 3^\circ$ in latitude w/ 25% overlap
- Observe each field with two narrow band filters: $Pa\alpha$ and $Pa\alpha$ cont.
- Exposure = 30 min. per filter per field

Sciences—Warm Ionized Medium (WIM)

• WIM occupies > 20–50% of the ISM volume.

Composite H α map

Sciences—Warm Ionized Medium (WIM)

• Too much $H\alpha$ emission compared to the model expectation

Possible solutions:

- Three-component model for diffuse emission (Dong & Draine 2011)
- Dust-scattered Hα emission from HII regions + underlying Hα absorption in background continuum (Seon & Witt 2012)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Sciences—Warm Ionized Medium (WIM)

Advantages of $Pa\alpha$ over $H\alpha$:

- Less suffered from dust scattering
- No underlying Paα absorption

Interesting targets in the MIRIS GP survey:

- Bright and faint HII regions
- Diffuse WIM sources (chimneys, filaments, etc.)
- Dust clouds scattering the Hα background radiation (Mattila et al. 2007)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Sciences	Instrument	NEP Survey	GP Survey	Status & Schedule

Development Status and Schedule

- Delivered to KARI; waiting for delivery to launch site
- Developing the data reduction pipeline (S0Cdr)
 - Python powered
 - Done by late March
- "Nominal" launch date: Late June
 - Launch site: Yasny, Russia
 - Launch vehicle: Dnepr LV (Yuzhnoye SDO, Ukraine)

(日) (日) (日) (日) (日) (日) (日) (日)

- After launch
 - PV: 3 months
 - Dedicated observations for NEP: 1 month
 - GP survey: 5 months
 - NEP survey: 2 months
 - GP survey: 5 months