A new era of survey science with the LSST

Yonsei University (Lee Jaehyun, Oh Seulhee, Ji Inchan, Choi hoseung, Kim jaemin)

A new era of survey science with the LSST

Yonsei University (Lee Jaehyun, Oh Seulhee, Ji Inchan, Choi hoseung, Kim jaemin)

Contents

1. Introduction to LSST

; Mission concept, Survey parameters, and Timeline

2. Science topics

; Solar system, Optical transients, Milky Way, DM and DE

Introduction

Large Synoptic Survey Telescope Cerro Pachón – Future site of the LSST LSST Rendering on El Peñón Gemini SOAR Cerro Pachón

ridge – view from northwest

Credit: C. Claver, NOAO/LSST

Mission concept

- 1. Main surveys (deep-wide-fast, 90%)
 - a. Whole southern sky
 - b. ~1000 visits over 10years
 (1 visit = 15 * 2)
 - c. 10 billion stars and 10 billion galaxies
- 2. Mini Surveys (10%)
 - a. Deep image
 - b. Time series

http://www.sdss.org/

System characteristics

Telescope and Site

Configuration	three-mirror, Alt-azimuth
Final f/ratio; plate scale	f/1.23 50 microns/arcsec 0.2 "/ pixe
Physical diameter of optics	M1: 8.4m M2: 3.4m M3: 5.02 m
First camera lens; focal plane diameter	Lens: 1.55 m field of view: 63 cm
Diameter of 80% encircled energy	$u{:}~0.26''~g{:}~0.26''~r{:}~0.18''~i{:}~0.18''~z{:}~0.19''~y{:}~0.20''$
spot due to optics	

Camera

Filter change time	120 seconds
Focal plane device configuration	4-side buttable, $> 90\%$ fill factor
Dynamic range	16 bits
Readout time	2 sec
Pixel size; pixel count	10 microns (0.2 arcsec); 3.2 Gpixels

LSST Science Book

4K x 4K x 189 CCD array http://www.astropilot.info/camera.htm

System characteristics

Main System and Survey Characteristics				
Étendue	$319 \text{ m}^2 \text{ deg}^2$			
Area and diameter of field of view	$9.6 \ deg^2$ (3.5 deg)			
Effective clear aperture (on-axis)	6.7 m (accounting for obscuration)			
Wavelength coverage (full response)	320-1080 nm			
Filter set	u, g, r, i, z, y (five concurrent in camera at a time)			
Sky coverage	20,000 deg ² (Main Survey)			
System Capability				
Single-visit depths (point sources; 5σ)	u: 23.9 g: 25.0 r: 24.7 i: 24.0 z: 23.3 y: 22.1 AB mag			
Baseline number of visits over 10 years	u: 70 g: 100 r: 230 i: 230 z: 200 y: 200			
Coadded depths (point sources; 5σ)	$u: 26.3 \ g: 27.5 \ r: 27.7 \ i: 27.0 \ z: 26.2 \ y: 24.9$ AB mag			
Photometry accuracy (rms mag)	repeatability: 0.005; zeropoints: 0.01			
Astrometric accuracy at $r = 24$ (rms)	parallax: 3 mas; proper motion: 1 mas yr^{-1}			

LSST Science Book

Timeline

Data products

Proce Cade	essing ince	Image Category (nles)	Catalog Categ (database)	jory	Alert Category (database)
Nightly		Raw science image Calibrated science image Subtracted science image Noise image Sky image Data quality analysis	Source catalog (from difference images) Object catalog (from difference images) Orbit catalog Data quality analysis		Transient alert Moving object alert Data quality analysis
		Calibration image RGB JPEG Images Data quality analysis	Object catalog (optimally measu Data quality a	g ured properties) nalysis	Data quality analysis
_	Final	Image Archive	345 PB	* SD	SS DR7 = 17TB
	Final	Catalog Archive	46 PB		2. A. 3 1000

Science topics

Main science topics

- 1. Solar system
- 2. The Milky Way
- 3. The transient and variable Universe
- 4. The evolution of galaxies
- 5. DM and DE

Small bodies in the solar system

LSST Science Book Version 2.0

An inventory of the solar system

- Dynamics, mass, size and color of many small bodies
 ; Origin of solar system
- 2. Monitoring hazardous astroids
- 3. Detecting faint objects

sin(i)

SDSS moving objects in their color revealing inhomogeneity and distinctiveness of populations.

Mapping the Milky Way with LSST

1.LSST will give us

- a.Map of the stellar number density to 100kpc over 20,000deg²
- b.Map of stellar metallicity using the photometry of near turn-off MS stars
- 2. These data will enable us to study
 - a. The overall smooth distribution of stars in the Milky Way and nearby galaxies
 - b.Large scale chemical gradients in the Milky Way
 - c. The distribution of mass and the potential of the Milky Way

(LSST Science Book Version 2.0)

The Transient and Variable Universe

Incredible diversity (L, P)

Checking theory

Discovery of new class

LSST Science Book Version 2.0

1. Demographics of Galaxy Population

a. Passively evolving galaxies

- Early-type galaxies, with little or no star formation
- LSST will be sensitive to L* early-type galaxies out to z ~ 2 for the wide area surveys and to z ~ 3 for the deep-drilling fields

b. High-z star forming galaxies

- Photometric sample sizes have grown to > 10^4 galaxies at z ~ 3 and > 10^3 galaxies at z > 5
- LSST will provide data for roughly 10⁹ galaxies at z > 2, of which ~ 10⁷ will be at z > 4.5

- 1. Demographics of Galaxy Population
 - c. Dwarf galaxies (dE & dSph)
 - A dwarf galaxy with M_V = -6 will be visible and distinguishable from the background out to ~ 4 Mpc

Fig 9.6 of LSST Science Book Version 2.0

- 2. Galaxy Mergers and Merger Rates
 - a. The importance of galaxy mergers to galaxy assembly, star formation, bulge formation, and supermassive black hole growth
 - LSST has the depth, volume, and wavelength coverage needed to perform a uniform study of L* mergers out to z ~ 2, and a statistical study of bright galaxy mergers out to z ~ 5

2. Galaxy Mergers and Merger Rates

- c. A variety of approaches to identify mergers in the LSST data
 - Short-lived strong morphological disturbances (z < 0.2)
 - Longer-lived but lower surface brightness extended tidal tails (z<1)
 - Residual fine structures detected in smooth model subtracted images
 - Galaxy pairs with projected separations enough to give a high probability for merging within a few hundred Myr
- d. The galaxy merger rate as a function of redshift, stellar mass, color, and environment

(Strong) Lenses & Dark Matter

Advantage of LSST : Excellent image quality (spatial resolution)

Expected number of lenses

Galaxy lens	~10
Group lens	~10
Cluster lens	~50
Lensed quassar	~10
Lensed SN	~300

Images of gravitationally lensed quasars.

- 1. Distribution of DM
- 2. DM properties (the self-interaction cross-section, interplay with the baryon)

the Bullet cluster 1E065756

SNe & Dark Energy

	Current studies	LSST
# of SNe	10	>10m (over 10yrs) >10
Hubble diagram	various telescopes, instruments, and passbands systematic-error dominated	one instrument statistical-error dominated

- 1. Constraint on DE (w_0, σ_8, Ω_m)
- 2. Probe of large-scale homogeneity and isotropy
- 3. Measuring baryon acoustic oscillations

Thank you