Studying Galaxy Interactions & Evolution using *N*-body/SPH Simulations

Jeong-Sun Hwang

The 3rd Survey Science Group Workshop (at Muju Resort)

2014-02-10

Background

To understand galaxy evolution

• Galaxy interaction is an important driver of galaxy evolution

Galaxy-Galaxy interactions change galactic properties:

• Star formation rates (SFR), Structures, Morphology, etc

Unveiling physical mechanisms responsible for the changes are difficult.

- Galaxies are complex:
 - Early-type (Ellipticals, S0) & Late-type (Spirals)
 - Dark-matter, Stars, Gas, etc
- Interactions are diverse:
 - Major/Minor merger
 - Flyby encounters (occurring more frequently)
 - Processes over a wide range of spatial- & time-scales
 - \rightarrow Numerical modeling is an excellent way to solve the problem.

Background

In investigating the evolution of interacting galaxy systems, observations & numerical simulations are complementary:

- High-resolution observations provide:
 - physical quantities & information
 - model constraints
- Numerical simulations provide:
 - direct experiments & analyses via simulated media
 - interpretation of observational results
 - additional constraints & information (e.g. DM halo profiles)

Motivation

Spiral galaxies comprise five different components: DM halo, stellar disk, stellar bulge, gaseous disk & *gaseous halo*

So far, *however*,

ICs for almost all hydrodynamic simulations of galaxy interactions have considered *only cold gas*.

 \rightarrow We take *both gas components* into account in our ICs.

Park, Gott, & Choi, 2008:

"Transformation of Morphology & Luminosity Classes of the SDSS Galaxies"

→ Galaxy's morphology critically depends on the nearest neighbor (as well as on luminosity & the large-scale density).

Park, Gott, & Choi 2008 Evolution of Morphology

Park, Gott, & Choi 2008 Evolution of Morphology

 f_E = Probability for a (target) galaxy to be an early-type

rnearest = distance between a target galaxy & its nearest neighbor

 $^{\scriptscriptstyle \Box}$ as rnearest \downarrow , fE \uparrow

- galaxy morphology is independent of the neighbor's morphology
- [□] due to the tide exerted by the closest neighbor

• rnearest < rvirial :

 $^{\scriptscriptstyle \Box}$ with an early-type neighbor: as rnearest $\downarrow,$ fE \uparrow

due to the tidal effects + hydrodynamical effects of hot gas of the neighbor

 $^{\rm o}$ with an late-type neighbor: as $r_{\rm nearest}\downarrow,\,f{\rm E}\downarrow$

due to the cold gas flowing from the neighbor

Our Numerical Study

The primary focus:

To find the effects of a hot gaseous halo on galaxy evolution

Our first sets of simulations (Hwang, Park, & Choi, 2013, JKAS, 46, 1): "The ICs and Evolution of Isolated Galaxy Models: Effects of the Hot Gas Halo", the first in series of planned papers

On-going work:

- Interactions between ETG & LTG and morphology transformation" (d~50kpc)
- Effects of hot halo gas on the SFR during distant ETG-LTG encounters" (d~100kpc)
- Fast flyby interactions between ETG & LTG (cluster environment)
- (Planed) Relation between bar strength & *r*_{nearest}

Recently,

a comprehensive set of numerical convergence tests have been completed

- to find optimal values for simulation parameters
- to minimize numerical errors at reasonable computation time

Numerical Codes

ZENO software package

- To generate initial galaxy models (ICs)
- Allows one to build multiple components in mutual equilibrium with user-specified density profiles in collisionless or gaseous form.
- Developed by Joshua Barnes

Gagdet3 simulation code

- To evolve the galaxy models
- N-body/SPH (Smoothed Particle Hydrodynamics) code
- Implemented physics:

Radiative cooling, Star formation, SN feedback,

Sub-resolution model of multiphase ISM (Springel & Hernquist 2003)

• Provided by Volker Springel

Gadget

(GAlaxies with Dark matter & Gas intEracT)

Radiative cooling:

- Compute cooling function for a gas of primordial composition (H, He) (Katz et al. 1996; Springel & Hernquist 2003)
- The abundances of the various ionization states of H and He, assuming ionization equilibrium in the presence of an external UV background field (Haardt & Madau 1996)

Star formation:

• Conditions: $\nabla \cdot v < 0$

 $\rho_{gas} > \rho th$ Jeans unstable ($\tau_{sound} = h/c_s > \tau_{dyn} = 1/\sqrt{(4\pi G\rho)}$) T < T th

- SFR: \dot{M} stars = (1- β) Mcold / τ stars
- τ_{stars} is chosen to match observation (Kennicutt 1998)

Our Galaxy Models

Galaxy models with or without a gas halo:

Model name	Gas halo model	Gas halo rotation	$f_{ m hg}$	$f_{ m dg}$
DHi	isothermal		0.01	0.12
DHi-f5	isothermal		0.05	0.12
DHir	isothermal	gas disk rotation $\times 0.5$	0.01	0.12
DHn	NFW		0.01	0.12
DHn-f5	NFW		0.05	0.12
D	1000	* * * *	1.1.2	0.12
Hi	isothermal		0.01	•••

$$M_{tot} = M_h + M_d + M_b = 126 \ x \ 10^{10} \ M_{\odot}$$

(120 + 5 + 1)

DM halo: NFW profile

Gas halo: Isothermal or NFW profile ($f_{hg} = 0.01$ or 0.05) Stellar & Gas disks: Exponential profile ($f_{dg} = 0.12$) Stellar bulge: Hernquist profile

Evolution

DHn

Results

Evolution of the models is strongly affected by the adopted gas halo component particularly in the gas dissipation & the star formation activity in the disk.

Model with a gas halo show higher SFRs than those without a gas halo (due to gas accretion from the halo onto the disk).Models with the NFW gas halo show higher SFRs than those with the isothermal gas halo.

The rotation of a gas halo makes SFR lower. (shock heating & angular momentum barrier)

We expect that more hydrodynamical processes in galaxies could be understood through numerical simulations employing both gas disk & gas halo components.

Star Formation Rates

Star Formation Rates

ETG-LTG, d100

Star Formation Rates

Ongoing work d~100kpc

EHi-DHi, d~100kpc

DM + Stars

Hot & Cold gas

EHi-DHi, d~100kpc, fast flyby

DM + Stars

Hot & Cold gas

Thank you :-D