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Prologue

In Riemannian geometry, the fundamental object is the metric, gµν .

Diffeomorphism: ∂µ −→ ∇µ = ∂µ + Γµ

∇λgµν = 0, Γλ
[µν]

= 0 −→ Γλµν = 1
2 gλρ(∂µgνρ + ∂νgµρ − ∂ρgµν)

Curvature: [∇µ,∇ν ] −→ Rκλµν −→ R

On the other hand, string theory puts gµν , Bµν and φ on an equal footing,

as they form a multiplet of T-duality.

This suggests the existence of a novel unifying geometric description of them,

generalizing the above Riemannian formalism.

Basically, Riemannian geometry is for Particle theory. String theory requires a

novel differential geometry which geometrizes the whole NS-NS sector.
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Prologue

My talk today aims to introduce such a Stringy Geometry which is defined in

doubled-yet-gauged spacetime.

In four-dimensional spacetime photon has two physical degrees of freedom, but can be

best described by a four component vector.

Similarly, D-dimensional spacetime may be better understood in terms of

doubled-yet-gauged (D + D) coordinates.
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Talk based on works with Imtak Jeon & Kanghoon Lee

Differential geometry with a projection: Application to double field theory

arXiv:1011.1324 JHEP

Double field formulation of Yang-Mills theory arXiv:1102.0419 PLB

Stringy differential geometry, beyond Riemann arXiv:1105.6294 PRD

Incorporation of fermions into double field theory arXiv:1109.2035 JHEP

Supersymmetric Double Field Theory: Stringy Reformulation of Supergravity

arXiv:1112.0069 PRD Rapid Comm.

Ramond-Ramond Cohomology and O(D,D) T-duality arXiv:1206.3478 JHEP

Stringy Unification of Type IIA and IIB Supergravities under N = 2 D = 10

Supersymmetric Double Field Theory arXiv:1210.5078 PLB

Comments on double field theory and diffeomorphisms arXiv:1304.5946 JHEP

Covariant action for a string in doubled yet gauged spacetime arXiv:1307.8377 NPB
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Parallel works on U-duality

U-geometry: SL(5) with Yoonji Suh arXiv:1302.1652 JHEP

M-theory and F-theory from a Duality Manifest Action

with Chris Blair and Emanuel Malek arXiv:1311.5109 JHEP

U-gravity: SL(N) with Yoonji Suh arXiv:1402.5027 JHEP
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Supergravity

The low energy effective action of gµν , Bµν , φ is well known in terms of Riemannian

geometry

Seff. =

∫
ΣD

√
−ge−2φ

(
Rg + 4∂µφ∂µφ− 1

12 HλµνHλµν
)
.

Diffeomorphism and B-field gauge symmetry are manifest,

xµ → xµ + δxµ , Bµν → Bµν + ∂µΛν − ∂νΛµ .

Though not manifest, this enjoys T-duality which mixes {gµν ,Bµν , φ}. Buscher
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T-duality

Redefine the dilaton,

e−2d =
√
−ge−2φ

Set a (D + D)× (D + D) symmetric matrix, Duff

HAB =

 g−1 −g−1B

Bg−1 g − Bg−1B



Hereafter, A,B, .... : ‘doubled’ (D + D)-dimensional vector indices, with D = 10 for

SUSY.

Jeong-Hyuck Park Stringy Differential Geometry and Double Field Theory



T-duality

T-duality is realized as an O(D,D) rotation in doubled spacetime Tseytlin, Siegel

HAB −→ MA
CMB

DHCD , d −→ d ,

where

M ∈ O(D,D) .
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T-duality

O(D,D) metric,

JAB :=

 0 1

1 0


freely raises or lowers the (D + D)-dimensional vector indices.
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Double Field Theory (DFT), 2009 - 2010

Hull and Zwiebach (later with Hohm ) reformulated the effective action under the

name, ‘Double Field Theory’ , in an O(D,D) manifest manner:

SDFT =

∫
ΣD

e−2d LDFT(H, d) ,

where

LDFT(H, d) = HAB
(

4∂A∂Bd − 4∂Ad∂Bd + 1
8∂AHCD∂BHCD − 1

2∂AHCD∂CHBD

)
+4∂AHAB∂Bd − ∂A∂BHAB .

Spacetime is formally doubled, yA = (x̃µ, xν), A = 1, 2, · · · ,D+D.

Yet, Double Field Theory (for NS-NS sector) is a D-dimensional theory written in

terms of (D + D)-dimensional language, i.e. tensors.

All the fields MUST live on a D-dimensional null hyperplane or ‘section’, ΣD .
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Section condition in Double Field Theory

By stating DFT lives on a D-dimensional null hyperplane, we mean that, the O(D,D)

d’Alembert operator is trivial, acting on arbitrary fields as well as their products:

∂A∂
AΦ = 2

∂2

∂x̃µ∂xµ
Φ ≡ 0 , ∂AΦ1∂

AΦ2 ≡ 0 : section condition

The origin of the section condition may be traced to the ‘level matching condition’ of

the massless sector on the worldsheet,

p · w ≡ 0 ⇐⇒ ∂A∂
A = 2

∂2

∂xµ∂x̃µ
≡ 0 .
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Section condition in Double Field Theory

Up to O(D,D) rotation, we may further choose to set

∂

∂x̃µ
≡ 0 .

Then DFT reduces to the effective action:

SDFT =⇒ Seff. =

∫
ΣD

√
−ge−2φ

(
Rg + 4(∂φ)2 − 1

12 H2
)
.
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Double Field Theory (DFT), 2009 - 2010

Thus, in the DFT formulation of the effective action by Hull, Zwiebach & Hohm the

O(D,D) T-duality structure is manifest,

LDFT(H, d) = HAB
(

4∂A∂Bd − 4∂Ad∂Bd + 1
8∂AHCD∂BHCD − 1

2∂AHCD∂CHBD

)
+4∂AHAB∂Bd − ∂A∂BHAB .

But the diffeomorphism and the B-field gauge symmetry are unclear.
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In the remaining of this talk, I will try to explain our proposal for

The Stringy Differential Geometry of DFT
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In the remaining of this talk, I will try to explain our proposal for

The Stringy Differential Geometry of DFT

Key concepts are

Projector

Semi-covariant derivative

Semi-covariant curvature

And their complete covariantization via ‘projection’
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Geometric Constitution of Double Field Theory
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Geometric Constitution of Double Field Theory

Notation

Capital Latin alphabet letters denote the O(D,D) vector indices, i.e.

A,B,C, · · · = 1, 2, · · · ,D+D, which can be freely raised or lowered by the O(D,D)

invariant constant metric,

JAB =

 0 1

1 0

 .
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Geometric Constitution of Double Field Theory

Doubled-yet-gauged spacetime

The spacetime is formally doubled, being (D+D)-dimensional.

However, the doubled spacetime is gauged : the coordinate space is equipped with an

equivalence relation,

xA ∼ xA + φ∂Aϕ ,

which we call ‘coordinate gauge symmetry’.

Note that φ and ϕ are arbitrary functions in DFT.
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Geometric Constitution of Double Field Theory

Doubled-yet-gauged spacetime

The spacetime is formally doubled, being (D+D)-dimensional.

However, the doubled spacetime is gauged : the coordinate space is equipped with an

equivalence relation,

xA ∼ xA + φ∂Aϕ ,

which we call ‘coordinate gauge symmetry’.

Note that φ and ϕ are arbitrary functions in DFT.

Each equivalence class, or gauge orbit, represents a single physical point, and

diffeomorphism symmetry means an invariance under arbitrary reparametrizations of

the gauge orbits.
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Geometric Constitution of Double Field Theory

Realization of the coordinate gauge symmetry.

The equivalence relation is realized in DFT by enforcing that, arbitrary functions and

their arbitrary derivatives, denoted here collectively by Φ, are invariant under the

coordinate gauge symmetry shift,

Φ(x + ∆) = Φ(x) , ∆A = φ∂Aϕ .
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Geometric Constitution of Double Field Theory

Section condition.

The invariance under the coordinate gauge symmetry can be shown to be equivalent to

the section condition ,

∂A∂
A ≡ 0 .
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Geometric Constitution of Double Field Theory

Section condition.

The invariance under the coordinate gauge symmetry can be shown to be equivalent to

the section condition ,

∂A∂
A ≡ 0 .

Explicitly, acting on arbitrary functions, Φ, Φ′, and their products, we have

∂A∂
AΦ=0 (weak constraint) ,

∂AΦ∂AΦ′=0 (strong constraint) .

Jeong-Hyuck Park Stringy Differential Geometry and Double Field Theory



Geometric Constitution of Double Field Theory

Diffeomorphism.

Diffeomorphism symmetry in O(D,D) DFT is generated by a generalized Lie derivative

Siegel, Courant, Grana

L̂X TA1···An := X B∂BTA1···An + ωT ∂BX BTA1···An +
n∑

i=1

(∂Ai XB − ∂BXAi )TA1···Ai−1
B

Ai+1···An ,

where ωT denotes the weight.
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Diffeomorphism.

Diffeomorphism symmetry in O(D,D) DFT is generated by a generalized Lie derivative

Siegel, Courant, Grana

L̂X TA1···An := X B∂BTA1···An + ωT ∂BX BTA1···An +
n∑

i=1

(∂Ai XB − ∂BXAi )TA1···Ai−1
B

Ai+1···An ,

where ωT denotes the weight.

In particular, the generalized Lie derivative of the O(D,D) invariant metric is trivial,

L̂XJAB = 0 .

The commutator of the generalized Lie derivatives is closed by C-bracket,[
L̂X , L̂Y

]
= L̂[X ,Y ]C , [X ,Y ]AC = X B∂BY A − Y B∂BX A + 1

2 Y B∂AXB − 1
2 X B∂AYB .
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Geometric Constitution of Double Field Theory

Dilaton and a pair of two-index projectors.

The geometric objects in DFT consist of a dilation, d , and a pair of symmetric

projection operators,

PAB = PBA , P̄AB = P̄BA , PA
BPB

C = δ C
A , P̄A

BP̄B
C = δ C

A .

Further, the projectors are orthogonal and complementary,

PA
BP̄B

C = 0 , PAB + P̄AB = JAB .
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Geometric Constitution of Double Field Theory

Dilaton and a pair of two-index projectors.

The geometric objects in DFT consist of a dilation, d , and a pair of symmetric

projection operators,

PAB = PBA , P̄AB = P̄BA , PA
BPB

C = δ C
A , P̄A

BP̄B
C = δ C

A .

Further, the projectors are orthogonal and complementary,

PA
BP̄B

C = 0 , PAB + P̄AB = JAB .

Remark: The difference of the two projectors, PAB − P̄AB = HAB , corresponds to the

“generalized metric" which can be also independently defined as a symmetric O(D,D)

element, i.e. HAB = HBA, HA
BHB

C = δ C
A . However, in supersymmetric double field

theories it appears that the projectors are more fundamental than the “generalized metric".
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Geometric Constitution of Double Field Theory

Integral measure.

While the projectors are weightless, the dilation gives rise to the O(D,D) invariant

integral measure with weight one, after exponentiation,

e−2d .
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Geometric Constitution of Double Field Theory

Semi-covariant derivative and semi-covariant Riemann curvature.

We define a semi-covariant derivative,

∇CTA1A2···An := ∂CTA1A2···An − ωT ΓB
BCTA1A2···An +

n∑
i=1

ΓCAi
BTA1···Ai−1BAi+1···An ,

and
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Geometric Constitution of Double Field Theory

Semi-covariant derivative and semi-covariant Riemann curvature.

We define a semi-covariant derivative,

∇CTA1A2···An := ∂CTA1A2···An − ωT ΓB
BCTA1A2···An +

n∑
i=1

ΓCAi
BTA1···Ai−1BAi+1···An ,

and a semi-covariant Riemann curvature,

SABCD := 1
2

(
RABCD + RCDAB − ΓE

ABΓECD

)
.

Here RABCD denotes the ordinary “field strength" of a connection,

RCDAB = ∂AΓBCD − ∂BΓACD + ΓAC
E ΓBED − ΓBC

E ΓAED .
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We define a semi-covariant derivative,

∇CTA1A2···An := ∂CTA1A2···An − ωT ΓB
BCTA1A2···An +

n∑
i=1

ΓCAi
BTA1···Ai−1BAi+1···An ,

and a semi-covariant Riemann curvature,

SABCD := 1
2

(
RABCD + RCDAB − ΓE

ABΓECD

)
.

Here RABCD denotes the ordinary “field strength" of a connection,

RCDAB = ∂AΓBCD − ∂BΓACD + ΓAC
E ΓBED − ΓBC

E ΓAED .

We may choose the (torsionless) connection to be

ΓCAB = 2
(
P∂CPP̄

)
[AB]

+ 2
(
P̄[A

DP̄B]
E − P[A

DPB]
E) ∂DPEC

− 4
D−1

(
P̄C[AP̄B]

D + PC[APB]
D)(∂Dd + (P∂E PP̄)[ED]

)
.
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Geometric Constitution of Double Field Theory

The semi-covariant derivative then obeys the Leibniz rule and annihilates the O(D,D)

invariant constant metric,

∇AJBC = 0 .
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The semi-covariant derivative then obeys the Leibniz rule and annihilates the O(D,D)

invariant constant metric,

∇AJBC = 0 .

A crucial defining property of the semi-covariant Riemann curvature is that, under

arbitrary transformation of the connection, it transforms as total derivative,

δSABCD = ∇[AδΓB]CD +∇[CδΓD]AB .
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Geometric Constitution of Double Field Theory

The semi-covariant derivative then obeys the Leibniz rule and annihilates the O(D,D)

invariant constant metric,

∇AJBC = 0 .

A crucial defining property of the semi-covariant Riemann curvature is that, under

arbitrary transformation of the connection, it transforms as total derivative,

δSABCD = ∇[AδΓB]CD +∇[CδΓD]AB .

Further, the semi-covariant Riemann curvature satisfies precisely the same symmetric

properties as the ordinary Riemann curvature,

SABCD = S[AB][CD] = SCDAB , S[ABC]D = 0 ,

as well as additional identities concerning the projectors,

PI
APJ

BP̄K
C P̄L

DSABCD=0 , PI
AP̄J

BPK
C P̄L

DSABCD = 0 .

It follows that

SAB
AB=0 .
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Geometric Constitution of Double Field Theory

The uniqueness of the torsionless connection.

The connection is the unique solution to the following five constraints:

∇APBC = 0 , ∇AP̄BC = 0 ,

∇Ad = − 1
2 e2d∇A(e−2d ) = ∂Ad + 1

2 ΓB
BA = 0 ,

ΓABC + ΓACB = 0 ,

ΓABC + ΓBCA + ΓCAB = 0 ,

PABC
DEF ΓDEF = 0 , P̄ABC

DEF ΓDEF = 0 .
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Geometric Constitution of Double Field Theory

The uniqueness of the torsionless connection.

The connection is the unique solution to the following five constraints:

∇APBC = 0 , ∇AP̄BC = 0 ,

∇Ad = − 1
2 e2d∇A(e−2d ) = ∂Ad + 1

2 ΓB
BA = 0 ,

ΓABC + ΓACB = 0 ,

ΓABC + ΓBCA + ΓCAB = 0 ,

PABC
DEF ΓDEF = 0 , P̄ABC

DEF ΓDEF = 0 .

The first two relations are the compatibility conditions with all the geometric

objects –or NS-NS sector– in DFT.

The third constraint is the compatibility condition with the O(D,D) invariant

constant metric, i.e. ∇AJBC = 0.
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Geometric Constitution of Double Field Theory

The uniqueness of the torsionless connection.

The connection is the unique solution to the following five constraints:

∇APBC = 0 , ∇AP̄BC = 0 ,

∇Ad = − 1
2 e2d∇A(e−2d ) = ∂Ad + 1

2 ΓB
BA = 0 ,

ΓABC + ΓACB = 0 ,

ΓABC + ΓBCA + ΓCAB = 0 ,

PABC
DEF ΓDEF = 0 , P̄ABC

DEF ΓDEF = 0 .

The next cyclic property makes the semi-covariant derivative compatible with the

generalized Lie derivative as well as with the C-bracket,

L̂X (∂) = L̂X (∇) , [X ,Y ]C(∂) = [X ,Y ]C(∇) .

The last formulae are projection conditions which we impose intentionally in

order to ensure the uniqueness.
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The last formulae are projection conditions which we impose intentionally in

order to ensure the uniqueness.
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Geometric Constitution of Double Field Theory

Six-index projection operators.

The six-index projection operators are explicitly,

PCAB
DEF := PC

DP[A
[E PB]

F ] + 2
D−1 PC[APB]

[E PF ]D ,

P̄CAB
DEF := P̄C

DP̄[A
[E P̄B]

F ] + 2
D−1 P̄C[AP̄B]

[E P̄F ]D ,

which satisfy the ‘projection’ properties,

PABC
DEFPDEF

GHI = PABC
GHI , P̄ABC

DEF P̄DEF
GHI = P̄ABC

GHI .

Further, they are symmetric and traceless,

PABCDEF = PDEFABC , PABCDEF = PA[BC]D[EF ] , PABPABCDEF = 0 ,

P̄ABCDEF = P̄DEFABC , P̄ABCDEF = P̄A[BC]D[EF ] , P̄ABP̄ABCDEF = 0 .
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Geometric Constitution of Double Field Theory

Crucially, the projection operator dictates the anomalous terms in the diffeomorphic

transformations of the semi-covariant derivative and the semi-covariant Riemann curvature,

(δX−L̂X )∇CTA1···An =
n∑

i=1

2(P+P̄)CAi
BDEF∂D∂E XF TA1···Ai−1BAi+1···An ,

(δX − L̂X )SABCD=2∇[A

(
(P+P̄)B][CD]

EFG∂E∂F XG

)
+ 2∇[C

(
(P+P̄)D][AB]

EFG∂E∂F XG

)
.
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Geometric Constitution of Double Field Theory

Complete covariantizations.

Both the semi-covariant derivative and the semi-covariant Riemann curvature can be

fully covariantized, through appropriate contractions with the projectors:

PC
DP̄A1

B1 · · · P̄An
Bn∇DTB1···Bn , P̄C

DPA1
B1 · · ·PAn

Bn∇DTB1···Bn ,

PABP̄C1
D1 · · · P̄Cn

Dn∇ATBD1···Dn , P̄ABPC1
D1 · · ·PCn

Dn∇ATBD1···Dn (divergences) ,

PABP̄C1
D1 · · · P̄Cn

Dn∇A∇BTD1···Dn , P̄ABPC1
D1 · · ·PCn

Dn∇A∇BTD1···Dn (Laplacians) ,

and
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Geometric Constitution of Double Field Theory

Complete covariantizations.

Both the semi-covariant derivative and the semi-covariant Riemann curvature can be

fully covariantized, through appropriate contractions with the projectors:

PC
DP̄A1

B1 · · · P̄An
Bn∇DTB1···Bn , P̄C

DPA1
B1 · · ·PAn

Bn∇DTB1···Bn ,

PABP̄C1
D1 · · · P̄Cn

Dn∇ATBD1···Dn , P̄ABPC1
D1 · · ·PCn

Dn∇ATBD1···Dn (divergences) ,

PABP̄C1
D1 · · · P̄Cn

Dn∇A∇BTD1···Dn , P̄ABPC1
D1 · · ·PCn

Dn∇A∇BTD1···Dn (Laplacians) ,

and

PA
C P̄B

DSCED
E (Ricci curvature) ,

(PACPBD − P̄AC P̄BD)SABCD (scalar curvature) .
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Geometric Constitution of Double Field Theory

Action.

The action of O(D,D) DFT is given by the fully covariant scalar curvature,

∫
ΣD

e−2d (PACPBD − P̄AC P̄BD)SABCD ,

where the integral is taken over a section, ΣD .
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The action of O(D,D) DFT is given by the fully covariant scalar curvature,

∫
ΣD

e−2d (PACPBD − P̄AC P̄BD)SABCD ,

where the integral is taken over a section, ΣD .

The dilation and the projector equations of motion correspond to the vanishing of the

scalar curvature and the Ricci curvature respectively.
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Geometric Constitution of Double Field Theory

Action.

The action of O(D,D) DFT is given by the fully covariant scalar curvature,

∫
ΣD

e−2d (PACPBD − P̄AC P̄BD)SABCD ,

where the integral is taken over a section, ΣD .

The dilation and the projector equations of motion correspond to the vanishing of the

scalar curvature and the Ricci curvature respectively.

Note: It is precisely the above expression that allows the ‘1.5 formalism’ to work in the full

order supersymmetric extensions of N = 1, 2, D = 10 Jeon-Lee-JHP
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Geometric Constitution of Double Field Theory

Section.

Up to O(D,D) duality rotations, the solution to the section condition is unique. It is a

D-dimensional section, ΣD , characterized by the independence of the dual coordinates,

i.e.
∂

∂x̃µ
≡ 0 ,

while the whole doubled coordinates are given by

xA = (x̃µ, xν) ,

where µ, ν are now D-dimensional indices.
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Geometric Constitution of Double Field Theory

Riemannian reduction.

To perform the Riemannian reduction to the D-dimensional section, ΣD , we

parametrize the dilation and the projectors in terms of D-dimensional Riemannian

metric, Gµν , ordinary dilaton, φ, and a Kalb-Ramond two-form potential, Bµν ,

PAB − P̄AB =

 G−1 −G−1B

BG−1 G − BG−1B

 , e−2d =
√
|G|e−2φ .
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Geometric Constitution of Double Field Theory

Riemannian reduction.

To perform the Riemannian reduction to the D-dimensional section, ΣD , we

parametrize the dilation and the projectors in terms of D-dimensional Riemannian

metric, Gµν , ordinary dilaton, φ, and a Kalb-Ramond two-form potential, Bµν ,

PAB − P̄AB =

 G−1 −G−1B

BG−1 G − BG−1B

 , e−2d =
√
|G|e−2φ .

The DFT scalar curvature then reduces upon the section to

(PACPBD − P̄AC P̄BD)SABCD

∣∣∣
ΣD

= RG + 4∆φ− 4∂µφ∂µφ− 1
12 HλµνHλµν ,

where as usual, Hλµν = 3∂[λBµν].
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Geometric Constitution of Double Field Theory

Riemannian reduction.

To perform the Riemannian reduction to the D-dimensional section, ΣD , we

parametrize the dilation and the projectors in terms of D-dimensional Riemannian

metric, Gµν , ordinary dilaton, φ, and a Kalb-Ramond two-form potential, Bµν ,

PAB − P̄AB =

 G−1 −G−1B

BG−1 G − BG−1B

 , e−2d =
√
|G|e−2φ .

The DFT scalar curvature then reduces upon the section to

(PACPBD − P̄AC P̄BD)SABCD

∣∣∣
ΣD

= RG + 4∆φ− 4∂µφ∂µφ− 1
12 HλµνHλµν ,

where as usual, Hλµν = 3∂[λBµν].

Up to field redefinitions, the above is the most general parametrization of the

“generalized metric", HAB = PAB − P̄AB , when the upper left D × D block of it is

non-degenerate.
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Geometric Constitution of Double Field Theory

Non-Riemannian backgrounds.

When the upper left D × D block of HAB = (P−P̄)AB is degenerate –where G−1 might

be positioned – the Riemannian metric ceases to exist upon the section, ΣD .

Nevertheless, the O(D,D) DFT and a doubled sigma model –which I will discuss later–

have no problem with describing such a non-Riemannian background.

An extreme example of such a non-Riemannian background is the flat background

where

HAB = (P−P̄)AB = JAB .

This is a vacuum solution to the bosonic O(D,D) DFT and the corresponding doubled

sigma model reduces to a certain ‘chiral’ sigma model.
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Geometric Constitution of Double Field Theory

Non-Riemannian backgrounds.

When the upper left D × D block of HAB = (P−P̄)AB is degenerate –where G−1 might

be positioned – the Riemannian metric ceases to exist upon the section, ΣD .

Nevertheless, the O(D,D) DFT and a doubled sigma model –which I will discuss later–

have no problem with describing such a non-Riemannian background.

An extreme example of such a non-Riemannian background is the flat background

where

HAB = (P−P̄)AB = JAB .

This is a vacuum solution to the bosonic O(D,D) DFT and the corresponding doubled

sigma model reduces to a certain ‘chiral’ sigma model.

Allowing non-Riemannian backgrounds, DFT is NOT a mere reformulation of SUGRA.

c.f. ‘global aspects’ Berman, Cederwall, Perry, Marques, Kanghoon Lee, Grana
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Further Remarks
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Based on the differential geometry I just described,

after incorporating fermions and R-R sector,

it is possible to construct, to the full order in fermions,

Type II, or N = 2, D = 10 Supersymmetric Double Field Theory

of which the Lagrangian reads

LType II = e−2d
[

1
8 (PABPCD − P̄ABP̄CD)SACBD + 1

2Tr(FF̄)− i ρ̄Fρ′ + iψ̄p̄γqF γ̄p̄ψ′q

+i 1
2 ρ̄γ

pD?pρ− iψ̄p̄D?p̄ρ− i 1
2 ψ̄

p̄γqD?qψp̄ − i 1
2 ρ̄
′γ̄p̄D′?p̄ ρ

′ + iψ̄′pD′?p ρ′ + i 1
2 ψ̄
′p γ̄q̄D′?q̄ ψ

′
p

]
Jeon-Lee-Suh-JHP
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Symmetries of N = 2 D = 10 SDFT

O(D,D) T-duality

Gauge symmetries

1 DFT-diffeomorphism (generalized Lie derivative)

2 A pair of local Lorentz symmetries, Spin(1,D−1)L × Spin(D−1, 1)R

3 local N = 2 SUSY with 32 supercharges.

All the bosonic symmetries are realized manifestly and simultaneously.

For this, it is crucial to have the right field variables:

d , VAp , V̄Ap̄ , Cαᾱ , ρα , ρ′ᾱ , ψαp̄ , ψ′ᾱp

which are O(D,D) covariant genuine DFT-field-variables, and a priori they are NOT

Riemannian, such as metric, B-field, R-R p-forms.
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Unification of IIA and IIB

O(D,D) T-duality

Gauge symmetries

1 DFT-diffeomorphism (generalized Lie derivative)

2 A pair of local Lorentz symmetries, Spin(1,D−1)L × Spin(D−1, 1)R

3 local N = 2 SUSY with 32 supercharges.

The theory is chiral with respect to both Local Lorentz groups: Spin(1,D−1)L and

Spin(D−1, 1)R .

Consequently, there is no distinction of IIA and IIB =⇒ Unificaiton of IIA and IIB

While the theory is unique, it contains type IIA and IIB SUGRA backgrounds as

different kind of solutions.
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Comment 1: String propagates in doubled-yet-gauged spacetime

The section condition is equivalent to the ‘coordinate gauge symmetry’, 1304.5946

xM ∼ xM + ϕ∂Mϕ′ .

A ‘physical point’ is one-to-one identified with a ‘gauge orbit’ in coordinate space.

The coordinate gauge symmetry can be realized on worldsheet, 1307.8377

S = 1
4πα′

∫
d2σ L , L = − 1

2

√
−hhij Di X M Dj X NHMN (X)− εij Di X MAjM ,

where

Di X M = ∂i X M −AM
i , AM

i ∂M ≡ 0 .

The Lagrangian is symmetric with respect to the string worldsheet diffeomorphisms,

Weyl symmetry, O(D,D) T-duality, target spacetime generalized diffeomorphisms and

the coordinate gauge symmetry, thanks to the auxiliary gauge field, AM
i .

c.f. Hull; Tseytlin; Copland, Berman, Thompson; Nibbelink, Patalong; Blair, Malek, Routh
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Comment 1: String propagates in doubled-yet-gauged spacetime

After parametrization and integrating out AM
i , it can produce either

the standard string action for the ‘non-degenerate’ Riemannian case,

1
4πα′L ≡

1
2πα′

[
− 1

2

√
−hhij∂i Yµ∂j YνGµν(Y ) + 1

2 ε
ij∂i Yµ∂j YνBµν(Y ) + 1

2 ε
ij∂i Ỹµ∂j Yµ

]
,

or chiral actions for ‘degenerate’ non-Riemannian cases, e.g. for HAB = JAB ,

1
4πα′L ≡

1
4πα′ ε

ij∂i Ỹµ∂j Yµ , ∂i Yµ + 1√
−h
εi

j∂j Yµ = 0 .

c.f. Gomis-Ooguri
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Comment 2: U-gravity SL(N) 1402.5027 with Yoonji Suh

Precisely analogous formalism has been developed for SL(N) , N 6= 4.

Extended-yet-gauged spacetime (≡ section condition), xab = −xba

Diffeomorphism generated by a generalized Lie derivative

Semi-covariant derivative and semi-covariant curvature

Complete covariantizations of them dictated by a projection operator

The action of SL(N) U-gravity is given by the fully covariant scalar curvature,∫
Σ

M
1

4−N S ,

where M = det(Mab) and the integral is taken over a section, Σ.

Up to SL(N) duality rotations, the section condition admits two inequivalent

solutions, (N − 1)-dimensional ΣN−1 and three-dimensional Σ3. Blair-Malek-JHP
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Conclusion

Summary

Riemannian geometry is for particle theory. String theory requires a novel differential

geometry which geometrizes the whole NS-NS sector and underlies DFT.

Novel differential geometic ingredients:

� Projection

� Semi-covariant derivative and curvature

� Spacetime being doubled-yet-gauged (section condition).

N = 2 D = 10 SDFT unifies IIA and IIB, as well as allows non-Riemannian

‘metric-less’ backgrounds.

Precisely parallel formulation constructed for SL(N) under the name, U-gravity.
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Conclusion

Outlook

Further study and classification of the non-Riemannian, ‘metric-less’ backgrounds.

Quantization of the string action on doubled-yet-gauged spacetime.

O(10, 10) covariant Killing spinor equation: SUSY and T-duality are compatible.

DFT cosmology? Cosmological constant reads Λe−2d = Λ
√
−ge−2φ.

The “relaxation” of the section condition: Geissbuhler; Graña, Marqués, Aldazabal;

Berman, Musaev, Blair, Malek, Perry; Berman, Kanghoon Lee for Scherk-Schwarz

and Blumenhagen, Fuchs, Lust, Sun for non-associativity

The uplift of type II SDFT toM-theory, or the extension of T-duality to U-duality:

West (E11); Damour, Henneaux, Nicolai, Riccioni, Steele; Cook; Aldazabal, Graña,

Marqués, Rosabal

U-duality manifestM-theory effective actions: Berman-Perry; Thompson, Godazgar2;

JHP-Suh (U-gravity); Cederwall, Edlund, Karlsson; Musaev; Hohm-Samtleben
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Thank you.
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The End
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Question: Is DFT a mere reformulation of SUGRA?

YES, if we take the following as a definition of the generalized metric,

HAB =

 g−1 −g−1B

Bg−1 g − Bg−1B

 .

NO, if we define the generalized metric as a symmetric O(D,D) element,

HAB = HBA , HA
CHB

DJCD = JAB .

With this abstract definition, DFT as well as a sigma model (which I will discuss

later) perfectly make sense.

It may then describe a novel non-Riemannian string theory backgrounds, e.g.

HAB = JAB ,

which does not admit any Riemannian interpretation!

c.f. Global aspects such as “non-geometry" Berman-Cederwall-Perry, Papadopoulos

and Scherk-Schwarz Geissbuhler, Grana-Marques, Aldazabal-Grana-Marques-Rosabal,

Dibitetto-Fernandez-Melgarejo-Marques-Roest, Berman-Lee
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Spacetime is doubled yet gauged 1304.5946 1307.8377

All the fields are required to satisfy the section condition,

∂A∂
AΦ ≡ 0 , ∂AΦ1∂

AΦ2 ≡ 0 ,

which implies an invariance under a shift set by a ‘derivative-index-valued’ vector,

Φ(x + ∆) = Φ(x) if ∆A = ϕ∂Aϕ′ for arbitrary functions ϕ and ϕ′ .

The section condition implies, and in fact can be shown to be equivalent to,

an equivalence relation for the coordinates,

xA ∼ xA + ϕ∂Aϕ′

A ‘physical point’ is one-to-one identified with a ‘gauge orbit’ in the coordinate space.

=⇒ The diffeomorphism symmetry means an invariance under arbitrary

reparametrizations of the ‘gauge orbits’.

Spacetime is doubled yet gauged! (further remarks to come at the end of this talk).
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Field contents of Type II SDFT

Bosons

NS-NS sector


DFT-dilaton: d

DFT-vielbeins: VAp , V̄Ap̄

R-R potential: Cαᾱ

Fermions

DFT-dilatinos: ρα , ρ′ᾱ

Gravitinos: ψαp̄ , ψ′ᾱp
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Jeong-Hyuck Park Stringy Differential Geometry and Double Field Theory



Field contents of Type II SDFT

Bosons

NS-NS sector


DFT-dilaton: d

DFT-vielbeins: VAp , V̄Ap̄

R-R potential: Cαᾱ
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Field contents of Type II SDFT

Bosons

NS-NS sector


DFT-dilaton: d

DFT-vielbeins: VAp , V̄Ap̄

R-R potential: Cαᾱ

Fermions

DFT-dilatinos: ρα , ρ′ᾱ

Gravitinos: ψαp̄ , ψ′ᾱp

Index Representation Metric (raising/lowering indices)

A, B, · · · O(D,D) & DFT-diffeom. vector JAB

p, q, · · · Spin(1,D−1)L vector ηpq = diag(− + + · · ·+)

α, β, · · · Spin(1,D−1)L spinor C+αβ , (γp)T = C+γ
pC−1

+

p̄, q̄, · · · Spin(D−1, 1)R vector η̄p̄q̄ = diag(+−− · · · −)

ᾱ, β̄, · · · Spin(D−1, 1)R spinor C̄+ᾱβ̄ , (γ̄p̄)T = C̄+γ̄
p̄C̄−1

+
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Field contents of Type II SDFT

Bosons

NS-NS sector


DFT-dilaton: d

DFT-vielbeins: VAp , V̄Ap̄

R-R potential: Cαᾱ

Fermions

DFT-dilatinos: ρα , ρ′ᾱ

Gravitinos: ψαp̄ , ψ′ᾱp

R-R potential and Fermions carry NOT (D + D)-dimensional

BUT undoubled D-dimensional indices.
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Field contents of Type II SDFT

Bosons

NS-NS sector


DFT-dilaton: d

DFT-vielbeins: VAp , V̄Ap̄

R-R potential: Cαᾱ

Fermions

DFT-dilatinos: ρα , ρ′ᾱ

Gravitinos: ψαp̄ , ψ′ᾱp

A priori, O(D,D) rotates only the O(D,D) vector indices (capital Roman), and

the R-R sector and all the fermions are O(D,D) T-duality singlet.

The usual IIA⇔ IIB exchange will follow only after fixing a gauge.
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The DFT-dilaton gives rise to a scalar density with weight one,

e−2d .

The DFT-vielbeins satisfy the four defining properties:

VApV A
q = ηpq , V̄Ap̄V̄ A

q̄ = η̄p̄q̄ , VApV̄ A
q̄ = 0 , VApVB

p + V̄Ap̄V̄B
p̄ = JAB .

For fermions, the gravitinos and the DFT-dilatinos are not twenty, but

ten-dimensional Majorana-Weyl spinors,

γ(D+1)ψp̄ = cψp̄ , γ(D+1)ρ = −c ρ ,

γ̄(D+1)ψ′p = c′ψ′p , γ̄(D+1)ρ′ = −c′ρ′ ,

where c and c′ are arbitrary independent two sign factors, c2 = c′2 = 1.

Lastly for the R-R sector, we set the R-R potential, Cαᾱ, to be in the bi-fundamental

spinorial representation of Spin(1,D−1)L × Spin(D−1, 1)R . It possesses the chirality,

γ(D+1)Cγ̄(D+1) = cc′ C .
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For fermions, the gravitinos and the DFT-dilatinos are not twenty, but

ten-dimensional Majorana-Weyl spinors,

γ(D+1)ψp̄ = cψp̄ , γ(D+1)ρ = −c ρ ,

γ̄(D+1)ψ′p = c′ψ′p , γ̄(D+1)ρ′ = −c′ρ′ ,

where c and c′ are arbitrary independent two sign factors, c2 = c′2 = 1.

Lastly for the R-R sector, we set the R-R potential, Cαᾱ, to be in the bi-fundamental

spinorial representation of Spin(1,D−1)L × Spin(D−1, 1)R . It possesses the chirality,

γ(D+1)Cγ̄(D+1) = cc′ C .
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Spin(1,D−1)L × Spin(D−1, 1)R chiralities:

γ(D+1)ψp̄ = cψp̄ , γ(D+1)ρ = −c ρ ,

γ̄(D+1)ψ′p = c′ψ′p , γ̄(D+1)ρ′ = −c′ρ′ ,

γ(D+1)Cγ̄(D+1) = cc′ C .

A priori all the possible four different sign choices are equivalent up to

Pin(1,D−1)L × Pin(D−1, 1)R rotations.

That is to say, N = 2 D = 10 SDFT is chiral with respect to both Pin(1,D−1)L and

Pin(D−1, 1)R , and the theory is unique, unlike IIA/IIB SUGRAs.

Hence, without loss of generality, we may safely set

c ≡ c′ ≡ +1 .

Later we shall see that while the theory is unique, it contains type IIA and IIB

supergravity backgrounds as different kind of solutions.
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The DFT-vielbeins generate a pair of two-index projectors,

PAB := VA
pVBp , PA

BPB
C = PA

C , P̄AB := V̄A
p̄V̄Bp̄ , P̄A

BP̄B
C = P̄A

C ,

which are symmetric, orthogonal and complementary to each other,

PAB = PBA , P̄AB = P̄BA , PA
BP̄B

C = 0 , PA
B + P̄A

B = δA
B .

It follows

PA
BVBp = VAp , P̄A

BV̄Bp̄ = V̄Ap̄ , P̄A
BVBp = 0 , PA

BV̄Bp̄ = 0 .

Note also

HAB = PAB − P̄AB .

However, our emphasis lies on the ‘projectors’ rather than the “generalized metric".
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Further, we construct a pair of six-index projectors,

PCAB
DEF := PC

DP[A
[E PB]

F ] + 2
D−1 PC[APB]

[E PF ]D , PCAB
DEFPDEF

GHI = PCAB
GHI ,

P̄CAB
DEF := P̄C

DP̄[A
[E P̄B]

F ] + 2
D−1 P̄C[AP̄B]

[E P̄F ]D , P̄CAB
DEF P̄DEF

GHI = P̄CAB
GHI ,

which are symmetric and traceless,

PCABDEF = PDEFCAB = PC[AB]D[EF ] , P̄CABDEF = P̄DEFCAB = P̄C[AB]D[EF ] ,

PA
ABDEF = 0 , PABPABCDEF = 0 , P̄A

ABDEF = 0 , P̄ABP̄ABCDEF = 0 .

As we shall see later, these projection operators play crucial roles, regarding the

constructions of the completely covariant derivatives and curvatures.
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Having all the ‘right’ field-variables prepared, we now discuss their derivatives or

what we call, ‘semi-covariant derivative’.

The meaning of “semi-covariant" will be clarified later.
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Semi-covariant derivatives

For each gauge symmetry we assign a corresponding connection,

ΓA for the DFT-diffeomorphism (generalized Lie derivative),

ΦA for the ‘unbarred’ local Lorentz symmetry, Spin(1,D−1)L,

Φ̄A for the ‘barred’ local Lorentz symmetry, Spin(D−1, 1)R .

Combining all of them, we introduce master ‘semi-covariant’ derivative

DA = ∂A + ΓA + ΦA + Φ̄A .
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It is also useful to set

∇A = ∂A + ΓA , DA = ∂A + ΦA + Φ̄A .

The former is the ‘semi-covariant’ derivative for the DFT-diffeomorphism (set by the

generalized Lie derivative),

∇CTA1A2···An := ∂CTA1A2···An − ωΓB
BCTA1A2···An +

n∑
i=1

ΓCAi
BTA1···Ai−1BAi+1···An .

And the latter is the covariant derivative for the Spin(1,D−1)L × Spin(D−1, 1)R local

Lorenz symmetries.
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By definition, the master derivative annihilates all the ‘constants’,

DAJBC = ∇AJBC = ΓAB
DJDC + ΓAC

DJBD = 0 ,

DAηpq = DAηpq = ΦAp
rηrq + ΦAq

rηpr = 0 ,

DAη̄p̄q̄ = DAη̄p̄q̄ = Φ̄Ap̄
r̄ η̄r̄ q̄ + Φ̄Aq̄

r̄ η̄p̄r̄ = 0 ,

DAC+αβ = DAC+αβ = ΦAα
δC+δβ + ΦAβ

δC+αδ = 0 ,

DAC̄+ᾱβ̄ = DAC̄+ᾱβ̄ = Φ̄Aᾱ
δ̄C̄+δ̄β̄ + Φ̄Aβ̄

δ̄C̄+ᾱδ̄ = 0 ,

including the gamma matrices,

DA(γp)αβ = DA(γp)αβ = ΦA
p

q(γq)αβ + ΦA
α
δ(γp)δβ − (γp)αδΦA

δ
β = 0 ,

DA(γ̄p̄)ᾱβ̄ = DA(γ̄p̄)ᾱβ̄ = Φ̄A
p̄

q̄(γ̄q̄)ᾱβ̄ + Φ̄A
ᾱ
δ̄(γ̄p̄)δ̄ β̄ − (γ̄p̄)ᾱδ̄Φ̄A

δ̄
β̄ = 0 .
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It follows then that the connections are all anti-symmetric,

ΓABC = −ΓACB ,

ΦApq = −ΦAqp , ΦAαβ = −ΦAβα ,

Φ̄Ap̄q̄ = −Φ̄Aq̄p̄ , Φ̄Aᾱβ̄ = −Φ̄Aβ̄ᾱ ,

and as usual,

ΦA
α
β = 1

4 ΦApq(γpq)αβ , Φ̄A
ᾱ
β̄ = 1

4 Φ̄Ap̄q̄(γ̄p̄q̄)ᾱβ̄ .
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Further, the master derivative is compatible with the whole NS-NS sector,

DAd = ∇Ad := − 1
2 e2d∇A(e−2d ) = ∂Ad + 1

2 ΓB
BA = 0 ,

DAVBp = ∂AVBp + ΓAB
CVCp + ΦAp

qVBq = 0 ,

DAV̄Bp̄ = ∂AV̄Bp̄ + ΓAB
C V̄Cp̄ + Φ̄Ap̄

q̄V̄Bq̄ = 0 .

It follows that

DAPBC = ∇APBC = 0 , DAP̄BC = ∇AP̄BC = 0 ,

and the connections are related to each other,

ΓABC = VB
pDAVCp + V̄B

p̄DAV̄Cp̄ ,

ΦApq = V B
p∇AVBq ,

Φ̄Ap̄q̄ = V̄ B
p̄∇AV̄Bq̄ .
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The connections assume the following most general forms:

ΓCAB = Γ0
CAB + ∆CpqVA

pVB
q + ∆̄Cp̄q̄V̄A

p̄V̄B
q̄ ,

ΦApq = Φ0
Apq + ∆Apq ,

Φ̄Ap̄q̄ = Φ̄0
Ap̄q̄ + ∆̄Ap̄q̄ .

Here

Γ0
CAB = 2

(
P∂CPP̄

)
[AB]

+ 2
(
P̄[A

DP̄B]
E − P[A

DPB]
E) ∂DPEC

− 4
D−1

(
P̄C[AP̄B]

D + PC[APB]
D)(∂Dd + (P∂E PP̄)[ED]

)
,

and, with the corresponding derivative, ∇0
A = ∂A + Γ0

A,

Φ0
Apq = V B

p∇0
AVBq = V B

p∂AVBq + Γ0
ABCV B

pV C
q ,

Φ̄0
Ap̄q̄ = V̄ B

p̄∇0
AV̄Bq̄ = V̄ B

p̄∂AV̄Bq̄ + Γ0
ABC V̄ B

p̄V̄ C
q̄ .
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The connections assume the following most general forms:

ΓCAB = Γ0
CAB + ∆CpqVA

pVB
q + ∆̄Cp̄q̄V̄A

p̄V̄B
q̄ ,

ΦApq = Φ0
Apq + ∆Apq ,

Φ̄Ap̄q̄ = Φ̄0
Ap̄q̄ + ∆̄Ap̄q̄ .

Further, the extra pieces, ∆Apq and ∆̄Ap̄q̄ , correspond to the torsion of SDFT, which

must be covariant and, in order to maintain DAd = 0, must satisfy

∆ApqV Ap = 0 , ∆̄Ap̄q̄V̄ Ap̄ = 0 .

Otherwise they are arbitrary.

As in SUGRA, the torsion can be constructed from the bi-spinorial objects, e.g.

ρ̄γpqψA , ψ̄p̄γAψq̄ , ρ̄γApqρ , ψ̄p̄γApqψ
p̄ ,

where we set ψA = V̄A
p̄ψp̄, γA = VA

pγp .
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The ‘torsionless’ connection,

Γ0
CAB = 2

(
P∂CPP̄

)
[AB]

+ 2
(
P̄[A

DP̄B]
E − P[A

DPB]
E) ∂DPEC

− 4
D−1

(
P̄C[AP̄B]

D + PC[APB]
D)(∂Dd + (P∂E PP̄)[ED]

)
,

further obeys

Γ0
ABC + Γ0

BCA + Γ0
CAB = 0 ,

and

PCAB
DEF Γ0

DEF = 0 , P̄CAB
DEF Γ0

DEF = 0 .
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In fact, the torsionless connection,

Γ0
CAB = 2

(
P∂CPP̄

)
[AB]

+ 2
(
P̄[A

DP̄B]
E − P[A

DPB]
E) ∂DPEC

− 4
D−1

(
P̄C[AP̄B]

D + PC[APB]
D)(∂Dd + (P∂E PP̄)[ED]

)
,

is uniquely determined by requiring

∇AJBC = 0 ⇐⇒ ΓCAB + ΓCBA = 0 ,

∇APBC = 0 ,

∇Ad = 0 ,

ΓABC + ΓCAB + ΓBCA = 0 ,

(P + P̄)CAB
DEF ΓDEF = 0 .
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Having the two symmetric properties, ΓA(BC) = 0, Γ[ABC] = 0, we may safely replace

∂A by ∇0
A = ∂A + Γ0

A in L̂X and also in [X ,Y ]AC ,

L̂X TA1···An = X B∇0
BTA1···An + ω∇0

BX BTA1···An +
∑n

i=1(∇0
Ai

XB −∇0
BXAi )TA1···Ai−1

B
Ai+1···An ,

[X ,Y ]AC =X B∇0
BY A − Y B∇0

BX A + 1
2 Y B∇0AXB − 1

2 X B∇0AYB ,

just like in Riemannian geometry.

In this way, Γ0
ABC is the DFT analogy of the Christoffel connection.

Precisely the same expression was later re-derived by Hohm & Zwiebach.
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Semi-covariant curvature

The usual curvatures for the three connections,

RCDAB = ∂AΓBCD − ∂BΓACD + ΓAC
E ΓBED − ΓBC

E ΓAED ,

FABpq = ∂AΦBpq − ∂BΦApq + ΦApr ΦB
r
q − ΦBpr ΦA

r
q ,

F̄ABp̄q̄ = ∂AΦ̄Bp̄q̄ − ∂BΦ̄Ap̄q̄ + Φ̄Ap̄r̄ Φ̄B
r̄
q̄ − Φ̄Bp̄r̄ Φ̄A

r̄
q̄ ,

are, from [DA,DB ]VCp = 0 and [DA,DB ]V̄Cp̄ = 0, related to each other,

RABCD = FCDpqVA
pVB

q + F̄CDp̄q̄V̄A
p̄V̄B

q̄ .

However, the crucial object in DFT turns out to be

SABCD := 1
2

(
RABCD + RCDAB − ΓE

ABΓECD

)
,

which we name semi-covariant curvature.
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Properties of the semi-covariant curvature

Precisely the same symmetric property as the Riemann curvature,

SABCD = 1
2

(
S[AB][CD] + S[CD][AB]

)
,

S0
[ABC]D = 0 .

Projection property,

PI
AP̄J

BPK
C P̄L

DSABCD ≡ 0 .

Under arbitrary variation of the connection, δΓABC , it transforms as

δSABCD = D[AδΓB]CD +D[CδΓD]AB − 3
2 Γ[ABE ]δΓE

CD − 3
2 Γ[CDE ]δΓE

AB ,

δS0
ABCD = D[AδΓ0

B]CD +D[CδΓ0
D]AB .
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‘Semi-covariance’

Generically, under DFT-diffeomorphisms, δX PAB = L̂X PAB , δX d = L̂X d , the variation

of the semi-covariant derivative contains an anomalous non-covariant part dictated by

the six-index projectors,

δX
(
∇CTA1···An

)
≡ L̂X

(
∇CTA1···An

)
+
∑

i

2(P+P̄)CAi
BFDE∂F∂[DXE ]T···B··· .

Hence, it is not DFT-diffeomorphism covariant,

δX 6= L̂X .

However, the characteristic property of our ‘semi-covariant’ derivative is that,

combined with the projectors it can generate various fully covariant quantities, as

listed below.
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Projector-aided, fully covariant derivatives

For O(D,D) tensors:

PC
DP̄A1

B1 P̄A2
B2 · · · P̄An

Bn∇DTB1B2···Bn ,

P̄C
DPA1

B1 PA2
B2 · · ·PAn

Bn∇DTB1B2···Bn ,

PABP̄C1
D1 P̄C2

D2 · · · P̄Cn
Dn∇ATBD1D2···Dn ,

P̄ABPC1
D1 PC2

D2 · · ·PCn
Dn∇ATBD1D2···Dn

 Divergences ,

PABP̄C1
D1 P̄C2

D2 · · · P̄Cn
Dn∇A∇BTD1D2···Dn ,

P̄ABPC1
D1 PC2

D2 · · ·PCn
Dn∇A∇BTD1D2···Dn

 Laplacians .
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Projector-aided, fully covariant derivatives

For Spin(1,D−1)L × Spin(D−1, 1)R tensors:

DpTq̄1q̄2···q̄n , Dp̄Tq1q2···qn ,

DpTpq̄1q̄2···q̄n , Dp̄Tp̄q1q2···qn ,

DpDpTq̄1q̄2···q̄n , Dp̄Dp̄Tq1q2···qn ,

where we set

Dp := V A
pDA , Dp̄ := V̄ A

p̄DA .

These are the pull-back of the previous results using the DFT-vielbeins.
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Projector-aided, fully covariant derivatives

Dirac operators for fermions, ρα, ψαp̄ , ρ
′ᾱ, ψ′ᾱp :

γpDpρ = γADAρ , γpDpψp̄ = γADAψp̄ ,

Dp̄ρ , Dp̄ψ
p̄ = DAψ

A ,

ψ̄Aγp(DAψq̄ − 1
2Dq̄ψA) ,

γ̄p̄Dp̄ρ
′ = γ̄ADAρ

′ , γ̄p̄Dp̄ψ
′
p = γ̄ADAψ

′
p ,

Dpρ′ , Dpψ′p = DAψ
′A ,

ψ̄′Aγ̄p̄(DAψ
′
q − 1

2Dqψ′A) .

Incorporation of fermions into DFT 1109.2035
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Projector-aided, fully covariant derivatives

For Spin(1,D−1)L × Spin(D−1, 1)R bi-fundamental spinorial fields, T αβ̄ :

D+T := γADAT + γ(D+1)DAT γ̄A ,

D−T := γADAT − γ(D+1)DAT γ̄A .

Especially for the torsionless case, the corresponding operators are nilpotent

(D0
+)2T ≡ 0 , (D0

−)2T ≡ 0 ,

and hence, they define O(D,D) covariant cohomology.

The field strength of the R-R potential, Cαᾱ, is then defined by

F := D0
+C .

Thanks to the nilpotency, the R-R gauge symmetry is simply realized

δC = D0
+∆ =⇒ δF = D0

+(δC) = (D0
+)2∆ ≡ 0 .
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Projector-aided, fully covariant curvatures

Scalar curvature:

(PABPCD − P̄ABP̄CD)SACBD .

“Ricci” curvature:

Spq̄ + 1
2Dr̄ ∆̄pq̄

r̄ + 1
2Dr ∆q̄p

r ,

where we set

Spq̄ := V A
pV̄ B

q̄SAB , SAB = SACB
C .
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Combining all the results above, we are now ready to spell

Type II i.e. N = 2 D = 10 Supersymmetric Double Field Theory
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Type II N = 2 D = 10 SDFT [ 1210.5078 ]

Lagrangian :

LType II = e−2d
[

1
8 (PABPCD − P̄ABP̄CD)SACBD + 1

2Tr(FF̄)− i ρ̄Fρ′ + iψ̄p̄γqF γ̄p̄ψ′q

+i 1
2 ρ̄γ

pD?pρ− iψ̄p̄D?p̄ρ− i 1
2 ψ̄

p̄γqD?qψp̄ − i 1
2 ρ̄
′γ̄p̄D′?p̄ ρ

′ + iψ̄′pD′?p ρ′ + i 1
2 ψ̄
′p γ̄q̄D′?q̄ ψ

′
p

]
.

where F̄ ᾱα denotes the charge conjugation, F̄ := C̄−1
+ FT C+.

As they are contracted with the DFT-vielbeins properly,

every term in the Lagrangian is fully covariant.
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Type II N = 2 D = 10 SDFT [ 1210.5078 ]
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2 ψ̄
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]
.

Torsions: The semi-covariant curvature, SABCD , is given by the connection,

ΓABC = Γ0
ABC + i 1

3 ρ̄γABCρ− 2i ρ̄γBCψA − i 1
3 ψ̄

p̄γABCψp̄ + 4iψ̄BγAψC

+ i 1
3 ρ̄
′γ̄ABCρ

′ − 2i ρ̄′γ̄BCψ
′
A − i 1

3 ψ̄
′p γ̄ABCψ

′
p + 4iψ̄′B γ̄Aψ

′
C ,

which corresponds to the solution for 1.5 formalism.

The master derivatives in the fermionic kinetic terms are twofold:

D?A for the unprimed fermions and D′?A for the primed fermions, set by

Γ?ABC = ΓABC − i 11
96 ρ̄γABCρ+ i 5

4 ρ̄γBCψA + i 5
24 ψ̄

p̄γABCψp̄ − 2iψ̄BγAψC + i 5
2 ρ̄
′γ̄BCψ

′
A ,

Γ′?ABC = ΓABC − i 11
96 ρ̄
′γ̄ABCρ

′ + i 5
4 ρ̄
′γ̄BCψ

′
A + i 5

24 ψ̄
′p γ̄ABCψ

′
p − 2iψ̄′B γ̄Aψ

′
C + i 5

2 ρ̄γBCψA .
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Type II N = 2 D = 10 SDFT [ 1210.5078 ]

The N = 2 supersymmetry transformation rules are

δεd = −i 1
2 (ε̄ρ+ ε̄′ρ′) ,

δεVAp = i V̄A
q̄(ε̄′γ̄q̄ψ

′
p − ε̄γpψq̄) ,

δεV̄Ap̄ = iVA
q(ε̄γqψp̄ − ε̄′γ̄p̄ψ

′
q) ,

δεC = i 1
2 (γpεψ̄′p − ερ̄′ − ψp̄ ε̄

′γ̄p̄ + ρε̄′) + Cδεd − 1
2 (V̄ A

q̄ δεVAp)γ(d+1)γpCγ̄q̄ ,

δερ = −γpD̂pε+ i 1
2γ

pε ψ̄′pρ
′ − iγpψq̄ ε̄′γ̄q̄ψ

′
p ,

δερ′ = −γ̄p̄D̂′p̄ε
′ + i 1

2 γ̄
p̄ε′ ψ̄p̄ρ− i γ̄q̄ψ′p ε̄γ

pψq̄ ,

δεψp̄ = D̂p̄ε+ (F − i 1
2γ

qρ ψ̄′q + i 1
2ψ

q̄ ρ̄′γ̄q̄)γ̄p̄ε
′ + i 1

4 εψ̄p̄ρ+ i 1
2ψp̄ ε̄ρ ,

δεψ′p = D̂′pε′ + (F̄ − i 1
2 γ̄

q̄ρ′ψ̄q̄ + i 1
2ψ
′q ρ̄γq)γpε+ i 1

4 ε
′ψ̄′pρ

′ + i 1
2ψ
′
p ε̄
′ρ′ ,

where

Γ̂ABC = ΓABC − i 17
48 ρ̄γABCρ+ i 5

2 ρ̄γBCψA + i 1
4 ψ̄

p̄γABCψp̄ − 3iψ̄′B γ̄Aψ
′
C ,

Γ̂′ABC = ΓABC − i 17
48 ρ̄
′γ̄ABCρ

′ + i 5
2 ρ̄
′γ̄BCψ

′
A + i 1

4 ψ̄
′p γ̄ABCψ

′
p − 3iψ̄BγAψC .
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Type II N = 2 D = 10 SDFT [ 1210.5078 ]

Lagrangian :

LType II = e−2d
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′ + iψ̄′pD′?p ρ′ + i 1
2 ψ̄
′p γ̄q̄D′?q̄ ψ

′
p

]
.

The Lagrangian is pseudo : It is necessary to impose a self-duality of the R-R field

strength by hand,

F̃− :=
(

1− γ(D+1)
)(
F − i 1

2ρρ̄
′ + i 1

2γ
pψq̄ψ̄

′
p γ̄

q̄
)
≡ 0 .
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Type II N = 2 D = 10 SDFT [ 1210.5078 ]

Lagrangian :

LType II = e−2d
[

1
8 (PABPCD − P̄ABP̄CD)SACBD + 1

2Tr(FF̄)− i ρ̄Fρ′ + iψ̄p̄γqF γ̄p̄ψ′q

+i 1
2 ρ̄γ

pD?pρ− iψ̄p̄D?p̄ρ− i 1
2 ψ̄
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(

1− γ(D+1)
)(
F − i 1

2ρρ̄
′ + i 1

2γ
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Type II N = 2 D = 10 SDFT [ 1210.5078 ]

Under the N = 2 SUSY transformation rule, the Lagrangian transforms, disregarding

total derivatives, as

δεLType II ' − 1
8 e−2d V̄ A

q̄δεVApTr
(
γpF̃−γ̄q̄F̃−

)
,

where

F̃− :=
(

1− γ(D+1)
)(
F − i 1

2ρρ̄
′ + i 1

2γ
pψq̄ψ̄

′
p γ̄

q̄
)
.

This verifies, to the full order in fermions, the supersymmetric invariance of the

action, modulo the self-duality.

For a nontrivial consistency check, the supersymmetric variation of the self-duality

relation is precisely closed by the equations of motion for the gravitinos,

δεF̃− = −i
(
D̃p̄ρ+ γpD̃pψp̄ − γpF γ̄p̄ψ

′
p

)
ε̄′γ̄p̄ − iγpε

(
D̃′p ρ̄′ + D̃′p̄ψ̄

′
p γ̄

p̄ − ψ̄p̄γpF γ̄p̄
)
.
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Equations of Motion for Bosons

DFT-vielbein:

Spq̄+Tr(γpF γ̄q̄F̄)+i ρ̄γpD̃q̄ρ+2iψ̄q̄D̃pρ−iψ̄p̄γpD̃q̄ψp̄+i ρ̄′γ̄q̄D̃pρ
′+2iψ̄′pD̃q̄ρ

′−iψ̄′q γ̄q̄D̃pψ
′
q= 0.

This is DFT-generalization of Einstein equation.

DFT-dilaton:

LType II = 0 .

Namely, the on-shell Lagrangian vanishes!

R-R potential:

D0
−

(
F − iρρ̄′ + iγrψs̄ψ̄

′
r γ̄

s̄
)

= 0 ,

which is automatically met by the self-duality, together with the nilpotency of D0
+,

D0
−

(
F − iρρ̄′ + iγrψs̄ψ̄

′
r γ̄

s̄
)

= D0
−

(
γ(D+1)F

)
= −γ(D+1)D0

+F = −γ(D+1)(D0
+)2C = 0 .

The 1.5 formalism works: The variation of the Lagrangian induced by that of the

connection is trivial, δLType II = δΓABC × 0 .
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Equations of Motion for Fermions

DFT-dilationos,

γpD̃pρ− D̃p̄ψ
p̄ −Fρ′ = 0 , γ̄p̄D̃p̄ρ

′ − D̃pψ′p − F̄ρ = 0 .

Gravitinos,

D̃p̄ρ+ γpD̃pψp̄ − γpF γ̄p̄ψ
′
p = 0 , D̃pρ′ + γ̄p̄D̃p̄ψ

′
p − γ̄p̄F̄γpψp̄ = 0 .
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Truncation to N = 1 D = 10 SDFT [1112.0069]

Turning off the primed fermions and the R-R sector truncates the N = 2 D = 10

SDFT to N = 1 D = 10 SDFT,

LN=1 = e−2d
[

1
8

(
PABPCD − P̄ABP̄CD)SACBD + i 1

2 ρ̄γ
AD?Aρ− iψ̄AD?Aρ− i 1

2 ψ̄
BγAD?AψB

]
.

N = 1 Local SUSY:

δεd = −i 1
2 ε̄ρ ,

δεVAp = −i ε̄γpψA ,

δεV̄Ap̄ = i ε̄γAψp̄ ,

δερ = −γAD̂Aε ,

δεψp̄ = V̄ A
p̄D̂Aε− i 1

4 (ρ̄ψp̄)ε+ i 1
2 (ε̄ρ)ψp̄ .
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N = 1 SUSY Algebra [1112.0069]

Commutator of supersymmetry reads

[δε1 , δε2 ] ≡ L̂X3 + δε3 + δso(1,9)L
+ δso(9,1)R

+ δtrivial .

where

X A
3 = i ε̄1γ

Aε2 , ε3 = i 1
2 [(ε̄1γ

pε2)γpρ+ (ρ̄ε2)ε1 − (ρ̄ε1)ε2] , etc.

and δtrivial corresponds to the fermionic equations of motion.
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Reduction to SUGRA

Now we are going to

parametrize the DFT-field-variables in terms of Riemannian variables,

discuss the ‘unification’ of IIA and IIB,

choose a diagonal gauge of Spin(1,D−1)L × Spin(D−1, 1)R ,

and reduce SDFT to SUGRAs.

Nevertheless, we emphasize that SDFT can describe not only Riemannian (SUGRA)

backgrounds but also new type of non-Riemannian (“metric-less") backgrounds.
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Parametrization: Reduction to Generalized Geometry

As stressed before, one of the characteristic features in our construction of N = 2

D = 10 SDFT is the usage of the O(D,D) covariant, genuine DFT-field-variables.

However, the relation to an ordinary supergravity can be established only after we

solve the defining algebraic relations of the DFT-vielbeins and parametrize the

solution in terms of Riemannian variables, i.e. zehnbeins and B-field.

Assuming that the upper half blocks are non-degenerate, the DFT-vielbein takes the

general form,

VAp = 1√
2

 (e−1)p
µ

(B + e)νp

 , V̄Ap̄ = 1√
2

 (ē−1)p̄
µ

(B + ē)νp̄

 .

Here eµp and ēν p̄ are two copies of the D-dimensional vielbein corresponding to the

same spacetime metric,

eµpeνqηpq = −ēµ p̄ēν q̄ η̄p̄q̄ = gµν ,

and further, Bµp = Bµν(e−1)p
ν , Bµp̄ = Bµν(ē−1)p̄

ν .
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Here eµp and ēν p̄ are two copies of the D-dimensional vielbein corresponding to the

same spacetime metric,
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Parametrization: Reduction to Generalized Geometry

Instead, we may choose an alternative parametrization,

VA
p = 1√

2

 (β + ẽ)µp

(ẽ−1)p
ν

 , V̄A
p̄ = 1√

2

 (β + ¯̃e)µp

(¯̃e−1)p
ν

 ,

where βµp = βµν(ẽ−1)p
ν , βµp̄ = βµν(¯̃e−1)p

ν , and ẽµp, ¯̃eµ p̄ correspond to

a pair of T-dual vielbeins for winding modes,

ẽµp ẽνqη
pq = −¯̃eµp̄

¯̃eν q̄η
p̄q̄ = (g − Bg−1B)−1µν .

Note that in the T-dual winding mode sector, the D-dimensional curved spacetime

indices are all upside-down: x̃µ, ẽµp, ¯̃eµp̄, βµν (cf. xµ, eµp , ēµp̄ , Bµν ).
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ẽµp ẽνqη
pq = −¯̃eµp̄

¯̃eν q̄η
p̄q̄ = (g − Bg−1B)−1µν .

Note that in the T-dual winding mode sector, the D-dimensional curved spacetime
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Parametrization: Reduction to Generalized Geometry

Two parametrizations:

VAp = 1√
2

 (e−1)p
µ

(B + e)νp

 , V̄Ap̄ = 1√
2

 (ē−1)p̄
µ

(B + ē)νp̄


versus

VA
p = 1√

2

 (β + ẽ)µp

(ẽ−1)p
ν

 , V̄A
p̄ = 1√

2

 (β + ¯̃e)µp

(¯̃e−1)p
ν

 .

In connection to the section condition, ∂A∂A ≡ 0, the former matches well with the

choice, ∂
∂x̃µ
≡ 0, while the latter is natural when ∂

∂xµ ≡ 0.

Yet if we consider dimensional reductions from D to lower dimensions,

there is no longer preferred parametrization =⇒ “Non-geometry”

c.f. Other parametrizations: Lust, Andriot, Betz, Blumenhagen, Fuchs, Sun et al.
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Parametrization: Reduction to Generalized Geometry

Two parametrizations:

VAp = 1√
2

 (e−1)p
µ

(B + e)νp

 , V̄Ap̄ = 1√
2

 (ē−1)p̄
µ

(B + ē)νp̄


versus

VA
p = 1√

2

 (β + ẽ)µp

(ẽ−1)p
ν

 , V̄A
p̄ = 1√

2

 (β + ¯̃e)µp

(¯̃e−1)p
ν

 .

However, let me emphasize that to maintain the clear O(D,D) covariant structure, it

is necessary to work with the parametrization-independent, and O(D,D) covariant,

DFT-vielbeins, VAp, V̄Ap̄, rather than the Riemannian variables, eµp, Bµν .

Furthermore, ‘degenerate’ cases are also allowed which lead to genuinely non-Riemannian

‘metric-less’ backgrounds =⇒ New type of string theory backgrounds 1307.8377
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Parametrization: Reduction to Generalized Geometry

Two parametrizations:

VAp = 1√
2

 (e−1)p
µ

(B + e)νp

 , V̄Ap̄ = 1√
2

 (ē−1)p̄
µ

(B + ē)νp̄


versus

VA
p = 1√

2

 (β + ẽ)µp

(ẽ−1)p
ν

 , V̄A
p̄ = 1√

2

 (β + ¯̃e)µp

(¯̃e−1)p
ν

 .

However, let me emphasize that to maintain the clear O(D,D) covariant structure, it

is necessary to work with the parametrization-independent, and O(D,D) covariant,

DFT-vielbeins, VAp, V̄Ap̄, rather than the Riemannian variables, eµp, Bµν .

Furthermore, ‘degenerate’ cases are also allowed which lead to genuinely non-Riemannian

‘metric-less’ backgrounds =⇒ New type of string theory backgrounds 1307.8377
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Parametrization: Reduction to Generalized Geometry

From now on, let us restrict ourselves to the former parametrization and impose
∂
∂x̃µ
≡ 0.

This reduces (S)DFT to Generalized Geometry

Hitchin; Grana, Minasian, Petrini, Waldram

For example, the O(D,D) covariant Dirac operators become

√
2γADAρ ≡ γm

(
∂mρ+ 1

4ωmnpγnpρ+ 1
24 Hmnpγnpρ− ∂mφρ

)
,

√
2γADAψp̄ ≡ γm

(
∂mψp̄ + 1

4ωmnpγnpψp̄ + ω̄mp̄q̄ψ
q̄ + 1

24 Hmnpγnpψp̄ + 1
2 Hmp̄q̄ψ

q̄ − ∂mφψp̄

)
,

√
2V̄ A

p̄DAρ ≡ ∂p̄ρ+ 1
4ωp̄qrγ

qrρ+ 1
8 Hp̄qrγ

qrρ ,

√
2DAψ

A ≡ ∂p̄ψp̄ + 1
4ωp̄qrγ

qrψp̄ + ω̄p̄
p̄q̄ψ

q̄ + 1
8 Hp̄qrγ

qrψp̄ − 2∂p̄φψ
p̄ .

ωµ ± 1
2 Hµ and ωµ ± 1

6 Hµ naturally appear as spin connections. Liu, Minasian
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Unification of type IIA and IIB SUGRAs

Since the two zehnbeins correspond to the same spacetime metric, they are related by

a Lorentz rotation,

(e−1ē)p
p̄(e−1ē)q

q̄ η̄p̄q̄ = −ηpq .

Further, there is a spinorial representation of this Lorentz rotation,

Seγ̄
p̄S−1

e = γ(D+1)γp(e−1ē)p
p̄ ,

such that

Seγ̄
(D+1)S−1

e = − det(e−1ē)γ(D+1) .
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Unification of type IIA and IIB SUGRAs

The N = 2 D = 10 SDFT Riemannian solutions are then classified into two groups,

cc′ det(e−1ē) = +1 : type IIA ,

cc′ det(e−1ē) = −1 : type IIB .

This identification with the ordinary IIA/IIB SUGRAs can be established, if we ‘fix’

the two zehnbeins equal to each other,

eµp ≡ ēµ p̄ ,

using a Pin(D−1, 1)R local Lorentz rotation which may or may not flip the

Pin(D−1, 1)R chirality,

c′ −→ det(e−1ē)c′ .

Namely, the Pin(D−1, 1)R chirality changes iff det(e−1ē) = −1.
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Jeong-Hyuck Park Stringy Differential Geometry and Double Field Theory



Unification of type IIA and IIB SUGRAs

The N = 2 D = 10 SDFT Riemannian solutions are classified into two groups,

cc′ det(e−1ē) = +1 : type IIA ,

cc′ det(e−1ē) = −1 : type IIB .

That is to say, formulated in terms of the genuine DFT-field variables, i.e. VAp, V̄Ap̄,

Cαᾱ, etc. the N = 2 D = 10 SDFT is a chiral theory with respect to the pair of local

Lorentz groups. The possible four chirality choices are all equivalent and hence the

theory is unique. We may safely put c ≡ c′ ≡ +1 without loss of generality.

However, the theory contains two ‘types’ of Riemannian solutions, as classified above.

Conversely, any solution in type IIA and type IIB supergravities can be mapped to a

solution of N = 2 D = 10 SDFT of fixed chirality e.g. c ≡ c′ ≡ +1.

In conclusion, the single unique N = 2 D = 10 SDFT unifies type IIA and IIB

SUGRAs. Further it allows non-Riemannian solutions.
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Cαᾱ, etc. the N = 2 D = 10 SDFT is a chiral theory with respect to the pair of local

Lorentz groups. The possible four chirality choices are all equivalent and hence the

theory is unique. We may safely put c ≡ c′ ≡ +1 without loss of generality.

However, the theory contains two ‘types’ of Riemannian solutions, as classified above.

Conversely, any solution in type IIA and type IIB supergravities can be mapped to a

solution of N = 2 D = 10 SDFT of fixed chirality e.g. c ≡ c′ ≡ +1.

In conclusion, the single unique N = 2 D = 10 SDFT unifies type IIA and IIB

SUGRAs. Further it allows non-Riemannian solutions.

Jeong-Hyuck Park Stringy Differential Geometry and Double Field Theory



Unification of type IIA and IIB SUGRAs

The N = 2 D = 10 SDFT Riemannian solutions are classified into two groups,
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Diagonal gauge fixing and Reduction to SUGRA

Setting the diagonal gauge,

eµp ≡ ēµp̄

with ηpq = −η̄p̄q̄ , γ̄p̄ = γ(D+1)γp, γ̄(D+1) = −γ(D+1), breaks the local Lorentz

symmetry,

Spin(1,D−1)L × Spin(D−1, 1)R =⇒ Spin(1,D−1)D .

And it reduces SDFT to SUGRA:

N = 2 D = 10 SDFT =⇒ 10D Type II democratic SUGRA

Bergshoeff, et al.; Coimbra, Strickland-Constable, Waldram

N = 1 D = 10 SDFT =⇒ 10D minimal SUGRA Chamseddine; Bergshoeff et al.
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Diagonal gauge fixing and Reduction to SUGRA

To the full order in fermions, N = 1 SDFT reduces to 10D minimal SUGRA:

L10D = det e × e−2φ
[
R + 4∂µφ∂µφ− 1

12 HλµνHλµν

+ i2
√

2ρ̄γm[∂mρ+ 1
4 (ω + 1

6 H)mnpγnpρ]− i4
√

2ψ̄p[∂pρ+ 1
4 (ω + 1

2 H)pqrγqrρ]

− i2
√

2ψ̄pγm[∂mψp + 1
4 (ω + 1

6 H)γnpψp + ωmpqψq − 1
2 Hmpqψq ]

+ 1
24 (ψ̄qγmnpψq)(ψ̄rγmnpψr )− 1

48 (ψ̄qγmnpψq)(ρ̄γmnpρ)
]
.

δεφ = i 1
2 ε̄(ρ+ γaψa) , δεea

µ = i ε̄γaψµ , δεBµν = −2i ε̄γ[µψν] ,

δερ = − 1√
2
γa[∂aε+ 1

4 (ω + 1
6 H)abcγ

bcε− ∂aφε]

+ i 1
48 (ψ̄dγabcψd )γabcε+ i 1

192 (ρ̄γabcρ)γabcε+ i 1
2 (ε̄γ[aψb])γ

abρ ,

δεψa = 1√
2

[∂aε+ 1
4 (ω + 1

2 H)abcγ
bcε]

− i 1
2 (ρ̄ε)ψa − i 1

4 (ρ̄ψa)ε+ i 1
8 (ρ̄γbcψa)γbcε+ i 1

2 (ε̄γ[bψc])γ
bcψa .
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Diagonal gauge fixing and Reduction to SUGRA

After the diagonal gauge fixing, we may parameterize the R-R potential as

C ≡
(

1
2

) D+2
4 ∑′

p
1
p!
Ca1a2···apγ

a1a2···ap

and obtain the field strength,

F := D0
+C ≡

(
1
2

) D
4 ∑′

p
1

(p+1)!
Fa1a2···ap+1γ

a1a2···ap+1

where
∑′

p denotes the odd p sum for Type IIA and even p sum for Type IIB, and

Fa1a2···ap = p
(

D[a1
Ca2···ap ] − ∂[a1

φ Ca2···ap ]

)
+ p!

3!(p−3)!
H[a1a2a3

Ca4···ap ]

The pair of nilpotent differential operators, D0
+ and D0

−, reduce to a ‘twisted K-theory’

exterior derivative and its dual, after the diagonal gauge fixing,

D0
+ =⇒ d + (H − dφ) ∧

D0
− =⇒ ∗ [ d + (H − dφ) ∧ ] ∗
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Diagonal gauge fixing and Reduction to SUGRA

In this way, ordinary SUGRA ≡ gauge-fixed SDFT,

Spin(1,D−1)L × Spin(D−1, 1)R =⇒ Spin(1,D−1)D .
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Modifying O(D,D) transformation rule

The diagonal gauge, eµp ≡ ēµ p̄, is incompatible with the vectorial O(D,D)

transformation rule of the DFT-vielbein.

In order to preserve the diagonal gauge, it is necessary to modify the O(D,D)

transformation rule.
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The diagonal gauge, eµp ≡ ēµ p̄, is incompatible with the vectorial O(D,D)

transformation rule of the DFT-vielbein.

In order to preserve the diagonal gauge, it is necessary to modify the O(D,D)

transformation rule.

Jeong-Hyuck Park Stringy Differential Geometry and Double Field Theory



Modifying O(D,D) transformation rule

The O(D,D) rotation must accompany a compensating Pin(D−1, 1)R local Lorentz

rotation, L̄q̄
p̄, SL̄

ᾱ
β̄ which we can construct explicitly,

L̄ = ē−1 [at − (g + B)bt] [at + (g − B)bt]−1 ē , γ̄q̄ L̄q̄
p̄ = S−1

L̄
γ̄p̄SL̄ ,

where a and b are parameters of a given O(D,D) group element,

MA
B =

 aµν bµσ

cρν dρσ

 .
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Modified O(D,D) Transformation Rule After The Diagonal Gauge Fixing

d −→ d

VA
p −→ MA

B VB
p

V̄A
p̄ −→ MA

B V̄B
q̄ L̄q̄

p̄

Cαᾱ , Fαᾱ −→ Cαβ̄(S−1
L̄

)β̄ ᾱ , Fαβ̄(S−1
L̄

)β̄ ᾱ

ρα −→ ρα

ρ′ᾱ −→ (SL̄)ᾱβ̄ρ
′β̄

ψαp̄ −→ (L̄−1)p̄
q̄ ψαq̄

ψ′ᾱp −→ (SL̄)ᾱβ̄ψ
′β̄
p

All the barred indices are now to be rotated. Consistent with Hassan

The R-R sector can be also mapped to O(D,D) spinors.

Fukuma, Oota Tanaka; Hohm, Kwak, Zwiebach
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Flipping the chirality: IIA ⇔ IIB

If and only if det(L̄) = −1, the modified O(D,D) rotation flips the chirality of the

theory, since

γ̄(D+1)SL̄ = det(L̄) SL̄γ̄
(D+1) .

Thus, the mechanism above naturally realizes the exchange of Type IIA and IIB

supergravities under O(D,D) T-duality.

However, since L̄ explicitly depends on the parametrization of VAp and V̄Ap̄ in terms of

gµν and Bµν , it is impossible to impose the modified O(D,D) transformation rule from

the beginning on the parametrization-independent covariant formalism.

It is an artifact of the diagonal gauge fixing.
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Comment 1: Double field Yang-Mills theory 1102.0419

With the semi-covariant derivative, we may construct YM-DFT :

FAB := ∇AVB −∇BVA − i [VA,VB ] , VA =

 φλ

Aµ + Bµνφν

 ,

SYM =

∫
ΣD

e−2d Tr
(

PABP̄CDFACFBD

)
≡
∫

dxD√−ge−2φTr
(

fµν fµν + 2DµφνDµφν + 2DµφνDνφµ + 2i fµν [φµ, φν ]

− [φµ, φν ][φµ, φν ] + 2 (fµν + i[φµ, φν ]) Hµνσφσ + HµνσHµντφσφτ
)
.

Similar to topologically twisted Yang-Mills, but differs in detail.

Curved D-branes are known to convert adjoint scalars into one-form,

φa → φµ, Bershadsky

Action for ‘double’ D-brane Hull; Albertsson, Dai, Kao, Lin
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Comment 2: Doubled-yet-gauged spacetime 1304.5946 1307.8377

The section condition is equivalent to the ‘coordinate gauge symmetry’,

xM ∼ xM + ϕ∂Mϕ′ .

A ‘physical point’ is one-to-one identified with a ‘gauge orbit’ in coordinate space.

The diffeomorphism symmetry means an invariance under arbitrary

reparametrizations of the ‘gauge orbits’.

Consequently, finite transformation rules are not unique.

For example, the exponentiation of the generalized Lie derivative and a simple ansatz

proposed by Hohm-Zwiebach. These two appear different but are fully equivalent to

each other, up to the coordinate gauge symmetry.

1304.5946. (see also Berman-Cederwall-Perry)
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Comment 2: Doubled-yet-gauged spacetime 1304.5946 1307.8377

String propagates in a doubled-yet-gauged spacetime, 1307.8377

S = 1
4πα′

∫
d2σ L , L = − 1

2

√
−hhij Di X M Dj X NHMN (X)− εij Di X MAjM ,

where

Di X M = ∂i X M −AM
i , AM

i ∂M ≡ 0 .

The Lagrangian is symmetric with respect to the string worldsheet diffeomorphisms,

Weyl symmetry, O(D,D) T-duality, target spacetime generalized diffeomorphisms and

the coordinate gauge symmetry, thanks to the auxiliary gauge field, AM
i .

c.f. Hull; Tseytlin; Copland, Berman, Thompson; Nibbelink, Patalong; Blair, Malek, Routh

Further, after parametrization and integrating out AM
i , it can produce either

the standard string action for the ‘non-degenerate’ Riemannian case,

1
4πα′L ≡

1
2πα′

[
− 1

2

√
−hhij∂i Yµ∂j YνGµν(Y ) + 1

2 ε
ij∂i Yµ∂j YνBµν(Y ) + 1

2 ε
ij∂i Ỹµ∂j Yµ

]
,

or novel chiral actions for ‘degenerate’ non-Riemannian cases, e.g. for HAB = JAB ,

1
4πα′L ≡

1
4πα′ ε

ij∂i Ỹµ∂j Yµ , ∂i Yµ + 1√
−h
εi

j∂j Yµ = 0 .
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Comment 3: U-gravity SL(N) 1402.5027 with Yoonji Suh

Precisely analogous formalism has been developed for SL(N) , N 6= 4.

Extended-yet-gauged spacetime (≡ section condition)

Diffeomorphism generated by a generalized Lie derivative

Semi-covariant derivative and semi-covariant curvature

Complete covariantizations of them dictated by a projection operator

The action of SL(N) U-gravity is given by the fully covariant scalar curvature,∫
Σ

M
1

4−N S ,

where M = det(Mab) and the integral is taken over a section, Σ.

Up to SL(N) duality rotations, the section condition admits two inequivalent solutions,

(N − 1)-dimensional ΣN−1 and three-dimensional Σ3.

Blair+Malek+JHP. (c.f. Hohm+Samtleben)
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Conclusion

Summary

Riemannian geometry is for particle theory. String theory requires a novel differential

geometry which geometrizes the whole NS-NS sector and underlies DFT.

The fundamental field-variables of N = 2 D = 10 SDFT are, besides the fermions,

the DFT-dilaton, d , DFT-vielbeins, VAp, V̄Ap̄, and the R-R potential, Cαᾱ.

Novel differential geometic ingredients:

� projectors, PAB = VApVB
p, P̄AB = V̄Ap̄V̄B

p̄, and semi-covariant derivative.

� Spacetime being doubled-yet-gauged (section condition).

N = 2 D = 10 SDFT manifests simultaneously the symmetric structures:

� O(10, 10) T-duality

� DFT-diffeomorphism (generalized Lie derivative)

� A pair of local Lorentz symmetries, Spin(1, 9)L × Spin(9, 1)R
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Conclusion

N = 2 D = 10 SDFT contains not only Riemannian SUGRA backgrounds but also

non-Riemannian ‘metric-less’ backgrounds.

While the theory is unique, the Riemannian solutions are twofold.

=⇒ Unification of IIA and IIB.

After parametrizing the DFT field-variables in terms of Riemannian ones and taking

the diagonal gauge, Spin(1, 9)L×Spin(9, 1)R → Spin(1, 9)D , SDFT reduces to SUGRA.

A priori, in the covariant formalism, the R-R sector and the fermions are O(D,D)

singlet.

Yet, the diagonal gauge fixing, eµp ≡ ēµp̄, modifies the O(D,D) transformation rule to

call for a compensating Pin(D−1, 1)R rotation, which may flip the chirality of the

theory, resulting in the known exchange of type IIA and IIB SUGRAs.
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Yet, the diagonal gauge fixing, eµp ≡ ēµp̄, modifies the O(D,D) transformation rule to

call for a compensating Pin(D−1, 1)R rotation, which may flip the chirality of the

theory, resulting in the known exchange of type IIA and IIB SUGRAs.

Jeong-Hyuck Park Stringy Differential Geometry and Double Field Theory



Conclusion

N = 2 D = 10 SDFT contains not only Riemannian SUGRA backgrounds but also

non-Riemannian ‘metric-less’ backgrounds.

While the theory is unique, the Riemannian solutions are twofold.

=⇒ Unification of IIA and IIB.

After parametrizing the DFT field-variables in terms of Riemannian ones and taking

the diagonal gauge, Spin(1, 9)L×Spin(9, 1)R → Spin(1, 9)D , SDFT reduces to SUGRA.

A priori, in the covariant formalism, the R-R sector and the fermions are O(D,D)

singlet.
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Question: Is DFT a mere reformulation of SUGRA?

YES, if we take the following as a definition of the generalized metric,

HAB =

 g−1 −g−1B

Bg−1 g − Bg−1B

 .

NO, if we define the generalized metric as a symmetric O(D,D) element,

HAB = HBA , HA
CHB

DJCD = JAB .

With this abstract definition, DFT as well as a sigma model (which I will discuss

later) perfectly make sense.

It may then describe a novel non-Riemannian string theory backgrounds, e.g.

HAB = JAB ,

which does not admit any Riemannian interpretation!

c.f. Global aspects such as “non-geometry" Berman-Cederwall-Perry, Papadopoulos

and Scherk-Schwarz Geissbuhler, Grana-Marques, Aldazabal-Grana-Marques-Rosabal,

Dibitetto-Fernandez-Melgarejo-Marques-Roest, Berman-Lee
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Conclusion

Outlook

Further study and classification of the non-Riemannian ‘metric-less’ backgrounds.

Quantization of the string action on doubled-yet-gauged spacetime.

O(10, 10) covariant Killing spinor equation: SUSY and T-duality are compatible.

The relaxation of the section condition: Geissbuhler; Graña, Marqués, Aldazabal;

Berman, Musaev, Blair, Malek, Perry; Berman, Kanghoon Lee for Scherk-Schwarz

and Blumenhagen, Fuchs, Lust, Sun for non-associativity

The uplift of type II SDFT toM-theory, or the extension of T-duality to U-duality:

West (E11); Damour, Henneaux, Nicolai, Riccioni, Steele; Cook; Aldazabal, Graña,

Marqués, Rosabal

U-duality manifestM-theory effective actions: Berman-Perry; Thompson, Godazgar2;

JHP-Suh (U-gravity); Cederwall, Edlund, Karlsson; Musaev; Hohm-Samtleben
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