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INTRODUCTION

Casimir effect: emergence of a macroscopic force due to quantum fluctuations in

vacuum.

The original Casimir effect (CASIMIR, 1948) is for two parallel infinitely long conducting

plates.

Even in pure vacuum, there is an attractive force

between the plates given by F = −∂E/∂a,

E

A
= −

π2

720 a3

where A is the area of the plates.

Boundary conditions determine the field modes.

The zero-point energy contribution of the fields

shifts in the presence of the conducting plates.

The difference is finite and calculable.

2 / 26



CASIMIR EFFECT, APPLICATIONS

There is renewed interest in Casimir effect:

Advances in instrumentation have allowed precise measurements of the effect

(LAMOREAUX (1997); MOHIDEEN & ROY (1998) + ...)

Casimir force becomes relevant in the design of nano-scale mechanical devices

On the theory side, a lot of activity in developing approaches to deal with the effects of different

geometries, orientation, surface roughness, thermal fluctuations etc., effects relevant in realistic

experimental setups.
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EDGES AND DIFFRACTION

An important and difficult question to address is diffraction due to edges.

For example, consider a variant of the parallel plate geometry

The Casimir energy has an additional term

E ∼ L/a2, where L is length along the edge

This is due to the modes undergoing diffraction

over the edge

Diffraction had not been analyzed in previous analytical methods

Mainly numerical methods using ”world line approach” (Monte Carlo simulations) by

GIES & KLINGMULLER

Can we calculate edge diffraction analytically?
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PARTITION FUNCTIONS & BOUNDARY THEORY

Work done with D. KABAT, V.P. NAIR (arXiv: 1002.3575; 1005.3352 ; 1107.0952; 1111.0838; 1304.0511)

Start with a scalar field theory

Path integral approach

Z =

∫
[dφ] e−S(φ), S(φ) =

1

2

∫ β

0
dτd3x (∂φ ∂φ)

The free energy is

E = −
1

β
log Z , β →∞

φ propagates in two regions separated by a plate with a hole (at y = 0)

Dirichlet boundary conditions, φ = 0 on all boundaries; φ = φ0 on the hole

y = a

left right

φ = φ0 φ = 0

y = −b y = 0
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PARTITION FUNCTIONS & BOUNDARY THEORY (cont’d.)

STRATEGY: Integrate over φ in the bulk left and right regions, leave φ0 integral to the

end. This will produce a non-local effective action on the hole.

φ = φcl + η

η vanishes on all boundaries (including hole area), and φcl = 0, with

φcl →

 φ0 on hole

0 elsewhere on boundary

The solution is

φcl(x) =


∫

dd−1x′ φ0(x′) n · ∂′GL(x|x′) on left∫
dd−1x′ φ0(x′) n · ∂′GR(x|x′) on right

where GL , GR are Green’s functions obeying Dirichlet boundary conditions.
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PARTITION FUNCTIONS & BOUNDARY THEORY (cont’d.)

The action becomes

S(φ) =
1

2

∫
(∂η ∂η)L +

1

2

∫
(∂η ∂η)R + Shole

Shole =

∫
hole

1

2
φ0(x) M(x|x′) φ0(x′), M = ML + MR

where
ML,R(x|x′) = n · ∂ n · ∂′ GL,R(x|x′)

We can expand as

φ0 =
∑
α

cα uα(x)

{uα(x)} = complete set of modes for functions which are nonzero in the hole with the

boundary condition, uα(x)→ 0 at the edge of the hole.

The effective action on the hole becomes

Shole =
∑

cαOαβ cβ

Oαβ =

∫
dd−1x dd−1x′ uα(x) M(x|x′) uβ(x′)
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NATURE OF O

Integrating over cα we get

Z = det−1/2(−�L) det−1/2(−�R) det−1/2(O)

The bulk determinants capture the Casimir energy that would be present if there was no

hole. Corrections are given by the non-local field theory Shole that lives on the hole.

The explicit form ofO depends on the arrangement of plates and holes. We find

MR(x|x′) = < x|
√
−∇2 coth

(
b1

√
−∇2

)
|x′ >

ML(x|x′) = < x|
√
−∇2 coth

(
b2

√
−∇2

)
|x′ >

where∇2 is the Laplacian on the middle plate.

Consider different limits of b1, b2 to study different geometries.
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PLATE WITH A SLIT

Consider a single slit on a plate of width w = 2a and length L at inverse temperature β

x = − a x = a

Functions on the hole are expanded in terms of modes given by

uodd
m ∼ sin (mπx/a) , m = 1, 2, · · ·

ueven
p ∼ cos (pπx/a) , p = 1/2, 3/2, · · ·

For the odd modes, we get (similarly for even modes)

Oodd
mn =

2a

π

∫ ∞
−∞

dk (sin2 ka)
mπ

k2a2 −m2π2

√
k2 + µ2 nπ

k2a2 − n2π2

where µ2 = (2πn/β)2 + (2πl/L)2.

This separates naturally into a pole contribution and a cut contribution.
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PLATE WITH A SLIT (cont’d.)

Omn = Odirect
mn +Odiffractive

mn

Oodd,direct
mn =

√
(mπ/a)2 + µ2 δmn diagonal

Oodd,diffractive
mn = −

2µ2a

π

∫ ∞
1

dy
√

y2 − 1
(

1− e−2µay
) mπ

m2π2 + µ2a2y2

nπ

n2π2 + µ2a2y2

There is a similar result for the even-parity modes.
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SLIT IN FOUR DIMENSIONS

The strategy now is to expand in powers of the diffractive contribution.

− log ZB =
1

2
Tr logOdirect +

1

2
TrO−1

directOdiffr −
1

4
TrO−1

directOdiffrO−1
directOdiffr + · · ·

↓ ↓ ↓

Edirect E(1),diffr E(2),diffr

Renormalization: There will be divergent terms; all of them can be absorbed as

renormalization of parameters (σ, α, ...) of the slit

Sslit = σ(Area) + α(Perimeter) + · · ·

Integrate over µ. In 4 dim and zero temperature (β →∞),

− log Z 4d = βL
∫

d2µ

(2π)2
(− log Z 2d)

Using the series expansion we find

Edirect
= −

ζ(3)L

128πa2
= (−2.99× 10−3

)
L

a2
(2 + 1) dim Casimir energy

E(1),diffr
= (2.15× 10−3

)
L

a2
, E(2),diffr

= (0.14× 10−3
)

L

a2
, E(3),diffr

= (0.02× 10−3
)

L

a2
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PERPENDICULAR PLATES

The geometry we consider is

x = a − a a

We obtain results from previous by restricting to odd modes which vanish at mid-point.

Edirect
⊥ = (−11.96× 10−3

)
L

a2

E(1)
⊥ = ( 5.01× 10−3

)
L

a2
, E(2)

⊥ = ( 0.66× 10−3
)

L

a2
E(3)
⊥ = ( 0.16× 10−3

)
L

a2

E(4)
⊥ = ( 0.05× 10−3

)
L

a2
E(5)
⊥ = ( 0.01× 10−3

)
L

a2

The total to this order is

E⊥ = (−6.07× 10−3)
L

a2

In good agreement with worldline Monte Carlo calculations by GIES & KLINGMULLER and

recent multiple-scattering results by MIT GROUP (MAGHREBI ET AL).

EGK
⊥ = (−6.00× 10−3)

L

a2
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PARALLEL PLATES

Similar procedure for parallel plates with a large slit

z
y = ay = 0

x = W

x = 0

Bulk plus direct contribution: E(0) = −π
2L(L1−W )

1440a3 − ζ(3)L
32πa2

Bulk same as the standard Casimir formula, with A → the facing area of plates.

The diffractive contributions are

E(1)
=

L

a2
(5.54× 10−3

), E(2)
=

L

a2
( 0.80× 10−3

), E(3)
=

L

a2
(0.19× 10−3

)

E(4)
=

L

a2
( 0.05× 10−3

), E(5)
=

L

a2
(0.01× 10−3

)

The total contribution per edge is Eedge = − γ2
L

a2 , γ = 0.00537

To be compared to γ ≈ 0.00523(GIES & KLINGMULLER), ≈ 0.0050(GRAHAM et al (MIT))
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HOLES/SLITS ON A PLATE

An interesting new result we can derive is the Casimir interaction between holes on a

plate.

The geometry is

r

The functional integral is now

− log ZB = β

∫ ∞
−∞

dµ

2π

1

2
Tr log

 O11 O12

O21 O22


whereOij ∼ 〈modes on hole i|O|modes on hole j 〉

For separations large compared to the size of the holes,

O12 ≈ 〈0|
√
−∇2 + µ2 |r〉 = −

1

2πr3
(1 + µr)e−µr
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HOLES ON A PLATE (cont’d.)

For r >> (hole size) we can expand in powers of the off-diagonal entries.

The interaction energy is

Eint = −
1

2π

∫ ∞
0

dµTr
[
(O11)−1O12(O22)−1O21

]
= −

5

32π3

Q1Q2

r7
(like van der Waals interaction)

where the charge associated with hole i is

Qi =

∫
hole i

d2x d2x′ 〈x| (Oii)
−1 |x′〉

≈ 1.28R3 (round), 0.228L3(square)
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SLITS ON A PLATE

Similar results are available for infinitely long slits

Eint

L
= −

1

2

∫
d2µ

2π2 Tr
[
(O11)−1O12(O22)−1O21

]
= −5.375× 10−3 Q1Q2

r6

where the charge associated with slit 1 is

Q1 =

∫
dxdx′〈x|O−1

11 |x
′〉

= 2.88× 10−2(slit width)2
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THERMAL EFFECTS

Important aspect of Casimir effect is its dependence on temperature

FT =

 ∼ T for high temperature

geometry− dependent for low temperature

At low temperatures, thermal effects are dominated by long-range fluctuations

FT =
aAζ(4)

π2
T 4 FT ∼ T b, b < 4
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THERMAL EFFECTS (cont’d.)

Low-T results in open geometries mainly numerical (GIES, WEBER).

Our formalism provides an analytic way to calculate thermal effects and account for

thermal diffractive contributions

In all geometries we studied

F = F bulk + F direct + F diffractive

F bulk ⇒ free energy of 4d ideal Bose gas

F direct ⇒ free energy of 3d ideal Bose gas∼ exponentially suppressed for low T

(T � 1/(hole width))

F diffractive
T = −

L

π

∞∑
l=1

∫ ∞
0

dµ µ J0(µlβ) log[Z diffractive
2d (aµ)]

At low T (β →∞), finite thermal contributions come from non-analytic behavior of

log Z2d in µ2 as µ→ 0 (terms∼ µ2n(log(aµ))l )
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LOW TEMPERATURE RESULTS

Slit (of width a)

Fslit,T =
ζ(3)

4π
LaT 3 −

7ζ(3)

90π
La2T 4 +O(T 6)

Perpendicular plates

F⊥,T =
ζ(3)

4π
LaT 3 −

16πζ(3)

945
La4T 6 +O(T 8)

(GIES, WEBER world-line formalism : F⊥,T ∼ T 3)

Infinite, Semi-infinite parallel plates

The thermal free energy can be decomposed into an excluded volume contribution

F ex
||,T =

ζ(4)

π2
VexT 4 −

ζ(3)

8π
AexT 3 +

ζ(2)

16π
PexT 2

and a diffractive edge contribution

F edge
||,T = −

2ζ(4)

π3
Lb2T 4

(
log(2bT ) +

ζ′(4)

ζ(4)

)
+

3ζ(5)

4π
Lb3T 5 + · · ·

(GIES, WEBER world-line formalism : F edge
||,T ∼ T 3.74)
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GENERAL BOUNDARY CONDITIONS

Previous analysis was for Dirichlet boundary conditions, φ = 0 on the plates

The most general boundary conditions (consistent with self-adjointness of Laplacian)

are of the form

∂nφ = −Kφ

where ∂nφ is the normal derivative andK is a hermitian operator on the boundary values

of the field

Familiar boundary conditions are special cases:

K→ 0 =⇒ ∂nφ = 0 (Neumann)

K→∞ =⇒ φ = 0 (Dirichlet)

K = κ (constant) =⇒ ∂nφ+ κφ = 0 (Robin)

Our formalism can accommodate all these different boundary conditions.
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WAVE FUNCTIONALS & BOUNDARIES

The partition function can be thought of in terms of wave functionals if we think of x as

time. Consider the space to be divided as shown.

Integrate over all fields on the left to obtain

ΨL(ϕ) =

∫
[DφL ] e−S

with φL defined on the interval 0 ≤ x ≤ a

and φL = ϕ on boundary at x = a.

χ

x1

a L − a

φL φR

Likewise, define

Ψ̃R(ϕ) =

∫
[DφR ] e−S

with φR defined on the interval a ≤ x ≤ L and φR = ϕ on boundary at x = a.

Then

ZB =

∫
[Dϕ] ΨL Ψ̃R
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WAVE FUNCTIONALS & BOUNDARIES (cont’d.)

There are some advantages to this way of thinking about the problem

If there is an actual Dirichlet plate with an aperture at x = a, we need to impose ϕ = 0

only on the plate, not the aperture, and we can write

ZB =

∫
[dϕ] ΨL(ϕ) Cplate(ϕ) Ψ̃R(ϕ)

where Cplate = δ[ϕ] on plate. This will give the previous results for Dirichlet bc.

What is the analog of Cplate for more general boundary conditions such as ∂nϕ = −Kϕ?

If we think of x as “time”, we can slice up the path integral along x-direction. The action

can be written as

S = S({φi}) =
1

2

∫
d3xT

[
(φN − φN−1)2

xN − xN−1
+

(φN−1 − φN−2)2

xN−1 − xN−2
+ · · ·+ (∇Tφ)2

]
where φN is the boundary value ϕ.

δ

δφN
e−S = −

(φN − φN−1)

xN − xN−1
e−S → −∂nϕ e−S
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WAVE FUNCTIONALS & BOUNDARIES(cont’d.)

∂nϕ+Kϕ = 0 on the plate⇐⇒
[
− δ
δϕ

+Kϕ
]

Ψ(ϕ) = 0

∫
[dϕ] exp

(
−

1

2

∫
ϕKϕ

)
(−

δ

δϕ
+Kϕ) Ψ[ϕ] = 0

This implies that for general boundary conditions Cplate(ϕ) = exp
(
− 1

2

∫
ϕKϕ

)
One can also choose independent boundary fields ϕL , ϕR on the left and right sides of

the same plate

The boundary part of the partition function becomes

ZB =

∫
[dϕL dϕR ] δaperture(ϕL − ϕR) e−SB

SB =
1

2

∫
plate,L

ϕL KL ϕL +
1

2

∫
plate,R

ϕR KR ϕR +
1

2

∫
boundary

ϕM ϕ
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RESULTS FOR GENERAL BOUNDARY CONDITIONS

E = Ebulk + Eedge

Ebulk =
π2

1440a3
A E(aκI , aκII )

Eedge =
L

a2
Eedge(aκI , aκII )

E depends on κ as shown in graph (m = aκ)
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RESULTS FOR GENERAL BOUNDARY CONDITIONS

Eedge,DR Eedge,RD

Eedge,RR
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SUMMARY, COMMENTS, FUTURE WORK

Contributions to Casimir energy due to boundary openings are described in terms of a

non-local field theory defined on the hole.

Our method of calculating Casimir energy in geometries with edges and apertures gives a

systematic way of analyzing diffractive contributions in a perturbative expansion. It can

be easily generalized to include finite temperature effects, higher dimensions, general

boundary conditions, etc

How do these results depend on spin, curvature?

Calculate higher point functions (important for near field transmission effects).

Generalization of BFK formula

26 / 26


