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1. Introduction

Quantum mechanics

Exactly solvable model problems:

δ-potential, harmonic oscillator, H-atom

Very helpful for the development and teaching of QM
Relevant for nature

Quantum field theory

The solution of a QFT is not a physical system, but a whole world
Very few exact, analytical results

Technically involved → frustrating teaching and learning experience
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Main roads for solving QFT problems

• Perturbation theory: most impressive quantitative results (QED), but lim-
ited number of problems.

• Non-perturbative questions: Mostly numerical – “theoretical experiments”
(lattice QCD). Very successful, but a large number of topics cannot be han-
dled with present Monte-Carlo methods in Euclidean space (finite density,
structure functions, time dependent problems, scattering or decay).

• Alternative for non-perturbative questions: Semiclassical methods. At the
origin of most analytical results in QFT (Higgs mechanism, Seiberg-Witten,
SUSY models, 1/N expansion).
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Quest for exactly solvable quantum field theoretical models

Lagrangian −→ wealth of phenomena

(analytically)

How to build a solvable QFT (here: for strongly interacting fermions)

1) Dimensional reduction from 3+1 to 1+1
2) Massless fermions with point interaction
3) Large N limit (number of flavors)

Nambu–Jona-Lasinio model (1963)

L =
N∑

k=1

ψ̄ki∂/ψk +
g2

2




 N∑
k=1

ψ̄kψk


2 +


 N∑
k=1

ψ̄kiγ5ψk
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Gross-Neveu model (1974)

L =
N∑

k=1

ψ̄ki∂/ψk +
g2

2


 N∑
k=1

ψ̄kψk


2
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Salient features

L = ψ̄i∂/ψ+
g2

2

[(
ψ̄ψ

)2
+
(
ψ̄iγ5ψ

)2]

• renormalizable in 2d ([g] = 1)

• asymptotic freedom (β = −Ng2

2π )
• U(N ) flavor symmetry
• continuous or discrete chiral symmetry (ψ → eiαγ5ψ resp. ψ → γ5ψ),
spontaneously broken in the vacuum

S = m cosϕ = −g2〈ψ̄ψ〉
P = m sinϕ = −g2〈ψ̄iγ5ψ〉

m

ϕ

ψ̄ψ

ψ̄iγ5ψ

• dimensional transmutation (dynamical fermion mass)
• fermion-antifermion bound states (σ, π)
• rich spectrum of multifermion bound states, no confinement
• rich phase diagram as a function of T, µ

Semiclassical methods become exact in the large N limit
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Relativistic time-dependent Hartree-Fock (Dirac 1930, Witten 1979)

(i∂/− S−iγ5P )ψα = 0

S = −g2
occ∑
β

ψ̄βψβ, P = −g2
occ∑
β

ψ̄βiγ5ψβ

Infinite set of coupled, nonlinear PDE’s (Dirac sea+valence levels).

Many exact, static solutions known in closed analytic form:
• vacuum (dynamical fermion mass, SSB of chiral symmetry)
• baryons (topologically nontrivial kinks, kink-antikink baryons)
• multikink and multibaryon bound states (“nuclei”)
• cold dense matter (soliton crystal, akin to Skyrme crystal)
• full phase diagram at finite T and µ

To find time-dependent solutions has proven more difficult. Only one such
solution was known before 2010, the breather of the Gross-Neveu model
(Dashen, Hasslacher and Neveu 1975).

Is it worth the effort?
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The Gross-Neveu kink (Callen, Coleman, Gross, Zee 1975)
Reflection of Z2 chiral symmetry, paradigm for fractional fermion number

S(x) = ± tanhx
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Total baryon momentum: Valence quarks 1
2 ln 2 ≈ 35%, sea quarks 1/2 =

50%, antiquarks 1
2(1− ln 2) ≈ 15%
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Déjà vu
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1) Schnetz, Thies and Urlichs (2004) Phase diagram of the Gross-Neveu
model: exact results and condensed matter precursors

2) Machida and Nakanishi (1984) Superconductivity under a ferromagnetic
molecular field (ErRh4B4)
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2. How to solve the TDHF equations

Gross-Neveu model

(i∂/− S)ψα = 0, S = −g2
occ∑
β

ψ̄βψβ

• Static solutions: Complete picture from inverse scattering theory.
Transparent potentials
• Time dependent solutions: no systematic method available.
Only one solution was known: DHN breather

NJL model

(i∂/− S − iγ5P)ψα = 0, S = −g2
occ∑
β

ψ̄βψβ, P = −g2
occ∑
β

ψ̄βiγ5ψβ

• Only one static solution was known: twisted kink (Shei 1976)
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Twisted kink of NJL model (Shei 1976)
Reflection of U(1) chiral symmetry
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Self-consistency relates occupation fraction of valence state to chiral twist

S − iP =
1+ e−2iθe2x sin θ

1+ e2x sin θ
, ν =

θ

π

Total fermion number vanishes due to U(1)⊗U(1) chiral symmetry

∂µj
µ
V = 0, ∂µj

µ
A = 0

1+1 dimensions

j
µ
V = εµν∂νΦ, j

µ
A = εµνjV,ν = ∂µΦ, �Φ = 0
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Recent progress on time-dependent issues in the Gross-Neveu model

• Solve multi-kink dynamics (sinh-Gordon theory)
• Solve few baryon scattering problems (ansatz method)
• Solve breather-breather scattering (ansatz method)
Problem: Intransparent results, limited to few hadrons; mysterious hints of
factorization; pushing Maple to its limits

Apply similar methods to NJL model: Striking simplification, factorization
in terms of twisted kinks. Static multikink solutions found independently by
Takahashi and Nitta in condmatt (Bogoliubov–de Gennes equation).
Both NJL model and Gross-Neveu model solved in full generality
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Two-strike procedure:

1) Find the most general transparent, time-dependent, scalar/pseudoscalar
Dirac potential

(i∂/− S − iγ5P)ψα = 0

Generalizes transparent, static Schrödinger potentials (Kay, Moses 1956)
Light cone variables (m = 1)

ζ = p− E, z = x− t, z̄ = x+ t

(Reflectionless) continuum spinor,

ψζ =
1√

1 + ζ2

(
ζχ1
−χ2

)
ei(ζz̄−z/ζ)/2

Full result (N ×N matrices)

S − iP =
det(ω+A)

det(ω+B)
, χ1 =

det(ω+ C)

det(ω+B)
, χ2 =

det(ω+D)

det(ω+B)

Bnm = i
ene∗m

ζn − ζ∗m
, en = ei(ζ

∗
nz̄−z/ζ∗n)/2, n = 1, ..., N
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Other matrices

A =
(
Z†)−1BZ, C = (ζ − Z†)B (ζ − Z)−1 , D =

(
Z†)−1CZ

with

Z = diag (ζ1, ..., ζN)

Can verify Dirac equation analytically in a few lines.

What is behind this solution? “Dressing method”

Chiral representation of Dirac matrices

γ0 = σ1, γ1 = iσ2, γ5 = γ0γ1 = −σ3

Dirac equation (∆= S − iP )

2i∂̄ψ2 = ∆ψ1, 2i∂ψ1 = −∆∗ψ2
Suppose we have found N solutions (→ ψ1, ψ2 are N -component vec-

tors). Perform a “gauge transformation”

ψ1 = Ωψ′
1, ψ2 = Ωψ′

2
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Dirac equation

2i∂̄ψ′
2 = ∆ψ′

1 − 2iΩ−1∂̄Ωψ′
2

2i∂ψ′
1 = −∆∗ψ′

2 − 2iΩ−1∂Ωψ′
1

Provided that

∂̄Ω = cψ1ψ
†
1, ∂Ω = c∗ψ2ψ†

2, Ω = Ω†

this is again a Dirac equation for ψ′
1, ψ

′
2 with the new potential

∆′ =∆− 2icψ†
1ψ

′
2

This reproduces the above results for the following choice (“vacuum”)

∆= 1, ψ1 = e, ψ2 = −(Z†)−1e, Ω = ω+B, c = 1/2

General transparent potential depends on ζn = −eiθn/2e−ξn (chiral twist,
rapidity of each kink) and ωnm (diagonal: spatial structure of compos-
ite states, initial conditions, off-diagonal: oscillation modes of breathers).
Kinks with the same rapidity belong to a bound cluster and must have dif-
ferent chiral twist.
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General solution contains a subset of solutions with P = 0, candidates for
self-consistent Gross-Neveu potentials. Two possibilities: Either chiral twist
π, or pairs of kinks with total twist 2π.

Fully factorized, unitary transmission amplitude

T(ζ) =
N∏

n=1

ζ − ζ∗n
ζ − ζn

, |T(ζ)| = 1

2) Check self-consistency of the transparent Dirac potential

S = −g2
occ∑
β

ψ̄βψβ, P = −g2
occ∑
β

ψ̄βiγ5ψβ

Yields bound state occupation fractions, restricts parameters.

S − iP = −2Ng2
(〈ψ∗

1ψ2〉sea + 〈ψ∗
1ψ2〉b

)
,

〈ψ∗
1ψ2〉sea = −1

2

∫ Λ

1/Λ

dζ

2π

1

ζ
χ∗
1χ2, 〈ψ∗

1ψ2〉b =
∑
n

νnφ̂
∗
1,nφ̂2,n

16



Pole at ζ = 0: divergent contribution

〈ψ∗
1ψ2〉sea|div = −(S − iP)

2π
ln Λ.

Self-consistent by itself owing to vacuum gap equation

Ng2

π
ln Λ = 1

〈ψ∗
1ψ2〉sea|conv + 〈ψ∗

1ψ2〉b = 0

Can be dealt with by algebraic means. The self-consistency condition also
guarantees that the fermion density vanishes in the NJL model.

Gross-Neveu model: The self-consistency condition changes (only S). There-
fore the occupation fractions change and non-zero fermion density can be
described.
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3. Selected results

Twisted kinks as confined constituents of Gross-Neveu hadrons

Gross-Neveu kink NJL kink (only S)

DHN baryon as a bound state of twisted kinks:

Original parametrization: Angle θ without geometrical interpretation — can
be identified with chiral twist angle of constituent kinks
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Shape Spectrum

Additive mass

MDHN/N =
2

π
sin θ =

1

π
sin θ+

1

π
sin(π − θ) = Mkink/N +Mkink/N

Factorized transmission amplitude (ζ = p−
√
p2 + 1)

TDHN =
p+ i sin θ

p− i sin θ
=

(
ζ + eiθ

ζ + e−iθ

)(
ζ − e−iθ

ζ − eiθ

)
=

(
ζ − ζ∗1
ζ − ζ1

)(
ζ − ζ∗2
ζ − ζ2

)
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How to present results for time-dependent solutions?
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Full information: Static, twisted kinks as building blocks of animations
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Another kind of dressing
An iteration of our dressing procedure leads back to the original solution

(ψ1, ψ2,∆) → (ψ′
1, ψ

′
2,∆

′) → (ψ1, ψ2,∆)

However, the Dirac equation

2i∂̄ψ2 = ∆ψ1, 2i∂ψ1 = −∆∗ψ2
also supports the following kind of dressing

(ψ1, ψ2,∆) → (eiα(z̄)ψ1, e
iβ(z)ψ2, e

i(β(z)−α(z̄))∆)

Self-consistency is also preserved. Interpretation: Macroscopic numbers
of left- and right-moving pions.
Physically interesting special case:

α(z̄) = az̄, β(z) = bz

∆ has vanishing fermion density ρ and current density j. Due to the chiral
anomaly, ∆′ = ei(bz−az̄)∆ has

ρ =
b− a

2π
, j =

b+ a

2π
This enables us to immerse any TDHF solution into a system with constant
fermion density (spacelike chiral spiral) or current density (timelike chiral
spiral)
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