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1. Introduction

Quantum mechanics

Exactly solvable model problems:

d-potential, harmonic oscillator, H-atom

Very helpful for the development and teaching of QM
Relevant for nature

Quantum field theory

The solution of a QFT is not a physical system, but a whole world
Very few exact, analytical results

Technically involved — frustrating teaching and learning experience



Main roads for solving QFT problems

e Perturbation theory: most impressive quantitative results (QED), but lim-
ited number of problems.

e Non-perturbative questions: Mostly numerical — “theoretical experiments”
(lattice QCD). Very successful, but a large number of topics cannot be han-
dled with present Monte-Carlo methods in Euclidean space (finite density,
structure functions, time dependent problems, scattering or decay).

e Alternative for non-perturbative questions: Semiclassical methods. At the
origin of most analytical results in QFT (Higgs mechanism, Seiberg-Witten,
SUSY models, 1/N expansion).



Quest for exactly solvable quantum field theoretical models

LLagrangian — wealth of phenomena
(analytically)

How to build a solvable QFT (here: for strongly interacting fermions)

1) Dimensional reduction from 3+1 to 1+1
2) Massless fermions with point interaction
3) Large N limit (number of flavors)

Nambu—Jona-Lasinio model (1963)
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Gross-Neveu model (1974)
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Salient features
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e renormalizable in 2d ([g] = 1)
2
e asymptotic freedom (8 = —]g—fr
e U(NV) flavor symmetry |
e continuous or discrete chiral symmetry (¢p — e'®75¢) resp. ¥ — y5v),

spontaneously broken in the vacuum
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e dimensional transmutation (dynamical fermion mass)

e fermion-antifermion bound states (o, )

e rich spectrum of multifermion bound states, no confinement
e rich phase diagram as a function of T, i
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Semiclassical methods become exact in the large N limit



Relativistic time-dependent Hartree-Fock (Dirac 1930, Witten 1979)

(1@ — S—ivsP)¢a =0
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6 B
Infinite set of coupled, nonlinear PDE’s (Dirac sea+valence levels).

Many exact, static solutions known in closed analytic form:

e vacuum (dynamical fermion mass, SSB of chiral symmetry)
e baryons (topologically nontrivial kinks, kink-antikink baryons)
e multikink and multibaryon bound states (“nuclei”)

e cold dense matter (soliton crystal, akin to Skyrme crystal)

e full phase diagram at finite 7" and p

To find time-dependent solutions has proven more difficult. Only one such
solution was known before 2010, the breather of the Gross-Neveu model

(Dashen, Hasslacher and Neveu 1975).

Is it worth the effort?



The Gross-Neveu kink (Callen, Coleman, Gross, Zee 1975)
Reflection of Z, chiral symmetry, paradigm for fractional fermion number

S(x) = £tanhx s o

Structure functions (Brendel 2010)
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Total baryon momentum Valence quarks 5 Lin2 ~ 35%, sea quarks 1/2 =
50%, antiquarks 5 a1 -1n2) ~ 15%
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1) Schnetz, Thies and Urlichs (2004) Phase diagram of the Gross-Neveu
model: exact results and condensed matter precursors

2) Machida and Nakanishi (1984) Superconductivity under a ferromagnetic
molecular field (ErRh4B4)



2. How to solve the TDHF equations

Gross-Neveu model

OCC

(i@ — S)Ya =0, S=-g%> s
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e Static solutions: Complete picture from inverse scattering theory.
Transparent potentials

e Time dependent solutions: no systematic method available.
Only one solution was known: DHN breather

NJL model
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e Only one static solution was known: twisted kink (Shei 1976)
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Twisted kink of NJL model (Shei 1976)
Reflection of U(1) chiral symmetry

1

Self-consistency relates occupation fraction of valence state to chiral twist

1 —210 2xsinf 9
S—’LP: +€ 6. , vV = —
1_|_€2:1:S|n9 T

Total fermion number vanishes due to U(1)®@U(1) chiral symmetry

@ijlj — U, a,ujffl —
1+1 dimensions

iy =€e"o,®, =y, =0, Ob=0
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Recent progress on time-dependent issues in the Gross-Neveu model

e Solve multi-kink dynamics (sinh-Gordon theory)

e Solve few baryon scattering problems (ansatz method)

e Solve breather-breather scattering (ansatz method)

Problem: Intransparent results, limited to few hadrons; mysterious hints of
factorization; pushing Maple to its limits

Apply similar methods to NJL model: Striking simplification, factorization
In terms of twisted kinks. Static multikink solutions found independently by
Takahashi and Nitta in condmatt (Bogoliubov—de Gennes equation).

Both NJL model and Gross-Neveu model solved in full generality
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Two-strike procedure:

1) Find the most general transparent, time-dependent, scalar/pseudoscalar
Dirac potential

(i — S —ivsP)Ya =0

Generalizes transparent, static Schrodinger potentials (Kay, Moses 1956)
Light cone variables (m = 1)

(=p—FE, z=z—-t, z=xz+t
(Reflectionless) continuum spinor,

e = 1 < ¢x1 )ez’(gz—z/g)/z
/1 ‘|‘C2 —X2

Full result (N x N matrices)

g _ip— det(w + A) __det(w+C) __det(w+ D)
YT det(w+ B) X' T det(w+ B) %7 det(w+ B)

Bnm p— ZM’ en f— eZ(C;E_Z/C’;;)/Q’ n = 17 “.’N
Cn = Cm
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Other matrices
A= (ZT)_l BZ, C=((-2NB(¢-2)"', D= (ZT)_l CZ
with
Z =diag (¢1,.--,C{N)
Can verify Dirac equation analytically in a few lines.

What is behind this solution?  “Dressing method

Chiral representation of Dirac matrices

V=01, v =ion, 5 =77 = —03
Dirac equation (A = S — iP)
200 = Apy, 201 = — A%y

Suppose we have found N solutions (— 1, are N-component vec-
tors). Perform a “gauge transformation”

Y1 = Qu, Yo = Q5
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Dirac equation
2105
210}

APy — 2iQ71aQuyh
—A*ph — 2iQ71oQy]

Provided that
5Q = cp1p], 0 = cFypl, Q=0f
this is again a Dirac equation for ¢} , 15 with the new potential
A= A = 2icylyph
This reproduces the above results for the following choice (“vacuum?”)
A=1 p1=¢e PYo=—-(2ZN7le, Q=w+B, c=1/2

General transparent potential depends on ¢, = —en/2¢—¢n (chiral twist,
rapidity of each kink) and wyy, (diagonal: spatial structure of compos-
ite states, initial conditions, off-diagonal: oscillation modes of breathers).

Kinks with the same rapidity belong to a bound cluster and must have dif-
ferent chiral twist.
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General solution contains a subset of solutions with P = 0, candidates for
self-consistent Gross-Neveu potentials. Two possibilities: Either chiral twist
7, or pairs of kinks with total twist 2.

Fully factorized, unitary transmission amplitude

N s
C_Cn
T(¢) = :
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2) Check self-consistency of the transparent Dirac potential

OoCC OoCC

S=-g°Y ¥gg, P=—g%> dgivsibg
6 &
Yields bound state occupation fractions, restricts parameters.

S —iP = —2Ng? (()i12)sea + (¥5va)p),

1 A dcl S

<¢T¢2>Sea — 5 1/A ;2X1X27 <¢T¢2>b — ;anbl,n(bzn
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Pole at ( = 0O: divergent contribution

S —1P
(Wia)seal gy = — - )i

Self-consistent by itself owing to vacuum gap equation

.

2

N
Y9 hA=1
_

<¢>1k¢2>sea|conv + <¢i¢2>b =0

Can be dealt with by algebraic means. The self-consistency condition also
guarantees that the fermion density vanishes in the NJL model.

Gross-Neveu model: The self-consistency condition changes (only .S). There-
fore the occupation fractions change and non-zero fermion density can be
described.
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3. Selected results

Twisted kinks as confined constituents of Gross-Neveu hadrons

A AN
N NI

Gross-Neveu kink NJL kink (only S)

DHN baryon as a bound state of twisted kinks:

Original parametrization: Angle 8 without geometrical interpretation — can
be identified with chiral twist angle of constituent kinks
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Shape \/ Spectrum

Additive mass
2

1 1
MDHN/N = —sinf = —sinf + —Siﬂ(ﬂ' — (9) = Mkink/N + Mkink/N
T 7 T

Factorized transmission amplitude (¢ = p — \/p2 + 1)
- =p+isine:<<+ei9><c—e—i9>=<c—c>{> (c—c;)
PN T p—ising T \¢+emi) \ ¢ —eif C—¢)\¢—¢C
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How to present results for time-dependent solutions?
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Full information: Static, twisted kinks as building blocks of animations
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Another kind of dressing
An iteration of our dressing procedure leads back to the original solution

(1,92, D) — (1,95, A') — (1,92, D)

However, the Dirac equation
200 = Avpy, 2i0Y1 = — A%
also supports the following kind of dressing
(1, o, A) — (eia(5)¢1, eiﬁ(z)¢2, ei(ﬁ(?«“)—oﬂ(g))A)

Self-consistency is also preserved. Interpretation: Macroscopic numbers
of left- and right-moving pions.
Physically interesting special case:

a(z) =az, [B(z) =bz

A has vanishing fermion density p and current density j. Due to the chiral
anomaly, A’ = ¢#(bz—aZ) A has
b—a . b+t+a

2 )= 2T
This enables us to immerse any TDHF solution into a system with constant
fermion density (spacelike chiral spiral) or current density (timelike chiral

spiral)

p:
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