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MOTIVATION:
Problems with causality in quantum and clas-

sical gravity.

Dream solution:
[A.S., 2005]

• our Universe as a soap film in a flat higher
dimensional bulk. The TOE is a field theory in this
bulk.

• To be renormalizable, it should involve higher
derivatives

DANGER: the ghosts



• GHOSTS = instability (rather absence) of
the vacuum

• inherent for higher-derivative theories.

Conventional system

E =
q̇2

2
+ V (q)

can have a classical and/or quantum bottom

• Consider the Pais-Uhlenbeck oscillator.

L =
1

2
(q̈ + Ω2q)2 .

Then

E = q̈(q̈ + Ω2q) − q̇(q(3) + Ω2q̇) − 1

2
(q̈ + Ω2q)2

can be as negative (and as positive) as one wishes.



• Common lore: negative residues in propaga-
tors break unitarity.

NOT TRUE!!

• No problem in free theories

• Interactions may lead to collapse and break-
ing of unitarity. Like falling into the center in the
attractive potential ∼ 1/r2.

• If quantum theory is sick, so is its classical
counterpart. If classical theory is benign, so is its
quantum counterpart



The Ostrogradsky Hamiltonian of
the free Pais-Uhlenbeck oscillator with
inequal frequencies

L =
1

2
(q̈ + Ω2

1q)(q̈ + Ω2
2q) .

can be canonically transformed to

H =
P 2

1 + Ω2
1Q

2
1

2
− P 2

2 + Ω2
2Q

2
2

2

• The spectrum

Enm = !Ω1

(

n +
1

2

)

− !Ω2

(

m +
1

2

)

has neither top, nor bottom.
• pure point, dense everywhere.

• Classical motion is finite. Quantum problem
is well defined. Evolution operator is unitary.



C. Bender + P. Mannheim, 2008 :

Let Q̃1 = Q1 and Q̃2 = iQ2.

• One can define then a spectral problem as-
sociated with the original PU spectral problem,
which has the positive definite Hamiltonian,

H̃ =
P̃ 2

1 + Ω2
1Q̃

2
1

2
+

P̃ 2
2 + Ω2

2Q̃
2
2

2

• True, but not necessary. One can well man-
age without that...



• Adding simple-minded nonlinear terms ∼ q4

or ∼ q2q̇2 to the Pais-Uhlenbeck Lagrangian does
lead to collapse.

Islands of stability:

• Oscillates when q(0) is small enough
• Runs to infinity at finite time when q(0) is

large enough.

The borderline case
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Benign nonlinear SQM system with ghosts
[D. Robert + A.S., 2006]

S =

∫

dtdxdθ̄dθ

[

i

2
D̄Φ

d

dt
DΦ + V (Φ)

]

,

with the real (0+1)-dimensional superfield

Φ = φ+ θψ̄ + ψθ̄ + Dθθ̄

• An extra time derivative.



The Hamiltonian

H = pP − DV ′(φ) + fermion term

is not positive definite.

Integrals of motion:
1. E ≡ H
2. N = 1

2 φ̇
2 − V (φ)

• Exactly solvable.

• Take

V (Φ) = −ω
2Φ2

2
− λΦ4

4
,



• Explicit solutions

φ(t) = φ0 cn[Ωt|m]

with

α =
ω4

λN
, Ω = [λN(4 + α)]1/4, m =

1

2

[

1 −
√

α

4 + α

]

,

φ0 =

(

N

λ

)1/4 √√
4 + α−

√
α

D(t) ∝ φ̇(t)

∫ t dt′

φ̇2(t′)

• φ(t) is bounded.
• D(t) grows linearly.



D(t)
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Quantum problem

• is also exactly solvable.

• If λ = 0, one can define {x±, p±} such that

HB =
p2
+ + ω2x2

+

2
−

p2
− + ω2x2

−

2
.

with En+,n
−

= ω(n+ − n−).

• Infinite degeneracy at each level.

In interacting case:

• Still an infinity of zero energy states
• Other states form a continuous spectrum,

Econt ∈ [−∞,−ω] ∪ [ω,∞] .



Mixed model

L =

∫

dθ̄dθ

[

i

2
(D̄Φ)

d

dt
(DΦ) +

γ

2
D̄ΦDΦ + V (Φ)

]

.

Physics is similar to the model with γ = 0, but

• not integrable anymore
• No linear growth for D(t)
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Figure 1: The function D(t) for a deformed system
( ω = 0,λ = 1, γ = .1).

• Explicit expressions for wave functions exist.
• The evolution operator is unitary.



Spectrum

In noninteracting case (λ = 0),
En+,n

−

= ω+n+ − ω−n−

with

ω± =
γ

2

(

√

1 + τ2 ∓ 1
)

, τ =
2ω

γ
.

• The same as for the Pais-Uhlenbeck oscillator
with different frequencies,

L =
1

2

(

q̈2 − (ω2
+ + ω2

−)q̇2 + ω2
+ω

2
−q2

)

• pure point, dense everywhere

• similarly - in the interacting case.



• Remark: the full canonical Hamiltonian

H = pP−DV ′(x)−γ
2

(

D2 + P 2
)2

+ψ̄χ̄+

(

γ2

4
− V ′′(x)

)

χψ .

is not Hermitian

• Its spectrum is, however, real. Belongs to the
class of crypto-Hermitian Hamiltonians.



UNUSUAL ALGEBRAIC STRUCTURES

• canonical Nöther supercharges

Q = ψ[p + iV ′(x)] −
(

χ̄+
γ

2
ψ

)

(P − iD) ,

Q̄ =
(

ψ̄ − γ

2
χ
)

(P + iD) − χ[p − iV ′(x)] .

• and the extra pair

T = ψ[p − iV ′(x)] +
(

χ̄+
γ

2
ψ

)

(P + iD) ,

T̄ =
(

ψ̄ +
γ

2
χ
)

(P − iD) + χ[p + iV ′(x)] .



• When γ = 0, we have a semidirect product
of the standard N = 4 SUSY algebra

{Q, Q̄} = {T, T̄} = 2H

(but Q̄ ̸= Q†, T̄ ̸= T † !)

and the Abelian Lie algebra generated by

N =
P 2

2
− V (x) ,

F = ψψ̄ − χχ̄

Nonvanishing commutators

{Q, Q̄} = {T, T̄} = 2H;

[Q̄, F ] = Q̄, [Q, F ] = −Q, [T, F ] = −T, [T̄ , F ] = T̄ ;

[Q, N ] = [T, N ] =
Q − T

2
, −[Q̄, N ] = [T̄ , N ] =

Q̄ + T̄

2
.



• When γ ̸= 0, the algebra is deformed

• Let H = H0 − γF/2 and introduce F+ =
χ̄ψ, F− = ψ̄χ

then

[F±, F ] = ∓2F±, [F+, F−] = F ,

[Q, H0] = −γ
2
Q, [Q̄, H0] =

γ

2
Q̄,

[T, H0] =
γ

2
T, [T̄ , H0] = −γ

2
T̄ ,

[Q, F ] = −Q, [Q̄, F ] = Q̄,

[T, F ] = T, [T̄ , F ] = −T̄ ,

[Q, F−] = T̄ , [Q̄, F+] = −T,

[T, F−] = −Q̄, [T̄ , F+] = Q ,

{Q, Q̄} = 2H0 − γF, {T, T̄} = 2H0 + γF,

{Q, T} = 2γF+, {Q̄, T̄} = 2γF− .



• This is osp(2, 2) algebra.
• a close relative of weak supersymmetry alge-

bra [A.S., PLB 585 (2004) 173]



(1+1) FIELD THEORY.

• Let Φ depend on t and x. Choose

S =

∫

dtdxdθ̄dθ [−2iDΦ∂+DΦ + V (Φ)] ,

where ∂± = (∂t ± ∂x)/2 and

D =
∂

∂θ
+ iθ∂−, D̄ =

∂

∂θ̄
− iθ̄∂+

Bosonic Lagrangian

LB = ∂µφ∂µD + DV ′(φ)

Equations of motion

!φ+ ω2φ+ λφ3 = 0

!D + D(ω2 + 3λφ2) = 0 .



Two integrals of motion:

E =

∫

dx
[

φ̇Ḋ + φ′D′ + Dφ(ω2 + λφ2)
]

(positive or negative)

N =

∫

dx

[

1

2

(

φ̇2 + (φ′)2
)

+
ω2φ2

2
+
λφ4

4

]

(positive definite)

• Stochasticity. Solved numerically.
Initial conditions

φ(x, t = 0) = Ce−x2

, with C = 1, 3, 5

D(x, t = 0) = cosπx/L

(L = 10 − length of the box)
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Figure 2: Dispersion d =
√

⟨D2⟩x as a function of
time for different values of C.



IMPLICATIONS FOR INFLATION ?
• Homogeneous classical field needed.
• Let φ(t) be homogeneous. Then different

Fourier modes of D(x, t) decouple.

ONLY THE ZERO MODE GROWS !
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• D(x, t) becomes more and more homogeneous.



TALK AFTER TALK:
a 6D superconformal theory

Matter content: bosons: non-Abelian gauge
fields AM (M = 0, 1, . . . , 5) and adjoint scalars
Djk = Dkj (j, k = 1, 2)

fermions: adjoint 6D Weyl spinors ψa
αj

(α = 1, 2, 3, 4)

Component Lagrangian

S = − 1

g2

∫

d6xTr

{

(

∇MFML

)2
+ iψjγM∇M (∇)2ψj +

1

2
(∇MDjk)2

+DlkDkjD l
j − 2iDjk

(

ψjγM∇Mψk −∇MψjγMψk
)

+ (ψjγMψj)
2

+
1

2
∇MψjγMσNS [FNS ,ψj ] − 2∇MFMN ψjγNψj

}



• Dimensionless coupling

• Classical superconformal symmetry

• Broken at the quantum level. Asymptotic
freedom

g(µ) = g0

(

1 − 5g2
0cV

48π3
ln

ΛUV

µ

)

• Chiral anomaly. Can be cancelled by adding
an adjoint hypermultiplet.

• Malignant ghosts and collapse. Especially
clearly seen in the scalar sector.

Eq. mot. D̈ ∼ D2. Reaches infinity at finite
time.


