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» Magnetic field is relevant in QCD if strong enough:

leB| 2 /\EQCD ~ 10 Gauss - e.

2/32



Introduction

Motivations

Motivations

» Magnetic field is relevant in QCD if strong enough:
leB| 2 /\EQCD ~ 10 Gauss - e.

» Some neutron stars, called magnetars, have magnetic fields at
the surface, B ~ 1012715 G (Magnetar SGR 1900+14):
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Motivations

> In the peripheral collisions of relativistic heavy ions huge
magnetic fields are produced at the center:
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Contents

» Vector Condensation (DKH, work under progress)
» Neutron star cooling (DKH, 1998)
» Chiral Magnetic Effect (DKH, 2011)
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Vector condensation

QCD under B field Neutron star
Chiral Magnetic effect

Vector condensation

» The energy spectrum of (elementary) charged particle under
the magnetic field (B = B2):

E(B) = +1/p2 + m? + nlqB],

where n = 2n, + |my| + 1 — sign(gB) (my + 2s;).
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Vector condensation

» The energy spectrum of (elementary) charged particle under
the magnetic field (B = B2):

E(B) = +1/p2 + m? + nlqB],

where n = 2n, + |my| + 1 — sign(gB) (my + 2s;).
» At the lowest Landau level the spin of the rho meson is along
the B field direction and n = —1. If elementary,

mlz)(B) = m/% —|eB].
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Vector condensation

» Vector meson condensation: Vector order parameter develops
under strong magnetic field (Chernodub 2011):

(Im1d) = —i(Oy2d) = p(x1).

Superconducting condensate Superfluid condensate
(charged rho mesons) (neutral rho mesons)
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Vector condensation
QCD under B field Neutron star

Chiral Magnetic effect

Vector condensation

» Lattice calculation shows vector meson becomes lighter under
the B field (Luschevskaya and Larina 2012):
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Vector condensation

» Lattice calculation shows vector meson condensation at
B > B. = 0.93GeV?/e (Barguta et al 1104.3767):
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Vector condensation

QCD under B field Neutron star
Chiral Magnetic effect

Effective Lagrangian (DKH98 & 2014):

» Quarks under strong B field occupy Landau levels:

E= /o2 +m 42008l (n=0,1,-)

E
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Effective Lagrangian (DKH98 & 2014):

» Quark propagator under B field is given as

o0

Sr(x) = Y1) [ ere el (g8, 4

n=0 k
Dn(qB, k)
[(1+ i€)ko]® — k2 — 2|gB|n

o () () (25

Sn(gB, k) =
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Vector condensation
QCD under B field Neutron star
Chiral Magnetic effect

Matching with QCD at A;:

> At low energy E < A; we integrate out the modes in the
higher Landau levels (n # 0).
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Matching with QCD at A;:

> At low energy E < A; we integrate out the modes in the
higher Landau levels (n # 0).

> A new quark-gluon coupling:

~p / ~p
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Chiral Magnetic effect

Effective Lagrangian (DKH98):

» Four-Fermi couplings for LLL quarks:
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Effective Lagrangian (DKH98):

» Four-Fermi couplings for LLL quarks:

1 8 2 2 S . 2
Log 2 Z1qB| [(QOQO) + (Qoivs Qo) } :

> Below A; the quark-loop does not contribute to the
beta-function of as: At one-loop

1 1, < [ )
e —In — .
as(p) as(AL)  2m 0 \ AL
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Effective Lagrangian (DKH98):

» One-loop RGE for the four-quark interaction:

d

R 40
'udi,ugl = —Eai ('“2)2
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Effective Lagrangian (DKH98):

» One-loop RGE for the four-quark interaction:

d

R 40
'udi,ugl = —Eai ('“2)2

» Solving RGE to get

g1 (1) = 1.1424 (as(p) — as(AL)) + &7 (AL) -
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Effective Lagrangian (DKH98):

» One-loop RGE for the four-quark interaction:

d

R 40
'udi,ugl = —Eai ('“2)2

» Solving RGE to get

g1 (1) = 1.1424 (as(p) — as(AL)) + &7 (AL) -

» If B > 10%° G, the four-quark interaction is stronger than
gluon interaction. Therefore the chiral symmetry should break
at a scale higher than the confinement scale for B > 10%° G.
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Vector mesons in the Effective Lagrangian:

» Running coupling under strong B field:

Qs (N)

Agep Aqen(B) AL %
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Vector condensation
QCD under B field Neutron star
Chiral Magnetic effect

Vector mesons in the Effective Lagrangian:

> We need a stronger B field (B > m?/e) to condense vector
mesons:

Aqep(B) 2
meffz B) = m?. <QCD > — |eB].
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Vector mesons in the Effective Lagrangian:

> We need a stronger B field (B > m?/e) to condense vector
mesons:

Aqep(B) 2
meffz B) = m?. <QCD > — |eB].

» The critical B field occurs at (DKH 2014)

4

9

eB. = m[2) . (Amp ) ~ 0.90 GeV?.
QCD
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Vector mesons in the Effective Lagrangian:

> We need a stronger B field (B > m?/e) to condense vector
mesons:

Aqep(B) 2
meffz B) = m?. <QCD > — |eB].

» The critical B field occurs at (DKH 2014)

4

9

eB. = m[2) . (Amp ) ~ 0.90 GeV?.
QCD

> It agrees well with the lattice result by Barguta et al,
B. = 0.93GeV?/e.
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Vector condensation
QCD under B field Neutron star
Chiral Magnetic effect

QCD Vacuum Energy:

» The additional vacuum energy at one-loop is given by
Schwinger as

1 * ds 2 eBs
Ayac = — DeMis |2 ).
vac = T g2 /0 $3° [sinh(eBs) ]
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QCD Vacuum Energy:

» The additional vacuum energy at one-loop is given by
Schwinger as

1 ds g eBs
Ayac = — DeMs| =2 1|,
bvac = ~15.2 /0 $3° [sinh(eBs) ]

» The chiral condensate becomes by the
Gell-Mann-Oakes-Renner relation (Shushpanov+Smilga '97)

_ \B ~ \B=0 |eB|In2
= 1 ... .
<qq> <qq> ( + 1671'2/'_7% +
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Vector condensation
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Chiral Magnetic effect

Neutron star cooling:

» Cooling through axion bremsstrahlung (DKH98)

/
/

/
/
L

(a) (b)
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Neutron star cooling:

» Cooling through axion bremsstrahlung (DKH98)

/
/

(a) (b)

» Energy loss per unit volume per unit time at low temp.
(lwamoto, Ellis, Brinkman+Turner)

f' 4
Q) x (M) m>°g2, T
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Neutron star cooling:

» The axion coupling gan < m,/fpg, m, x (§q), and since fpg
does not get any corrections from the magnetic field, we have

|eB|In2
gan(B) = gan(O) <1 + ]_671'725% 4. ).

18/32



Vector condensation
QCD under B field Neutron star
Chiral Magnetic effect

Neutron star cooling:

» The axion coupling gan < m,/fpg, m, x (§q), and since fpg
does not get any corrections from the magnetic field, we have

|eB|In2
ga”(B) = gan(o) <1 + 1671'2,57% 4o ).

» The correction then becomes (DKH '98), using the
Goldberg-Treiman relation and GOR relation,

1 s\ 2 6.5
QUB) _ (1, & \} (. |BlIn2\**
01(0) 272 1672 F2
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Neutron star cooling:

» Similarly, the lowest-order energy emission rate per unit
volume by the pion-axion conversion 7~ 4+ p — n+a
(Schramm) has corrections (DKH98):

Q5 (B) g\’ leB|In2\ "
Fa WP (14 81 (p4e2Ine
07 (0) < o * 622
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Neutron star cooling:

» Similarly, the lowest-order energy emission rate per unit
volume by the pion-axion conversion 7~ 4+ p — n+a
(Schramm) has corrections (DKH98):

— 2 -1
Qa_(B)g 1+if 1+]eB[|n2
Qr (0) 272 1672 F?2
» Order of magnitude enhancement for B = 10° G. Magnetars
cool quickly!
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Chiral Magnetic Effects (DKH2011)

» An instanton number may be created in RHIC:

g .
Ny = 32;2/d4xGaGa: ng— ng.

whose conjugate variable is 4.
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Chiral Magnetic Effects (DKH2011)

» An instanton number may be created in RHIC:

g .
Ny = 32;2/d4xGaGa: ng— ng.

whose conjugate variable is 4.

» Chiral magnetic effect (Fukushima+Kharzeev+Warringa):
Under a strong magnetic field

2
- q _
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Chiral Magnetic effect

» Off-center collision produces strong B field:

z
Reaction /
plane

(0 \

X (defines Wg)
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Chiral Magnetic effect

» Off-center collision produces strong B field:

z
Reaction /
plane

(%) \,

X (defines Wg)

» Such CP-odd effect can be then observable (Fukushima+
Kharzeev+Warringa 2008):
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Vector condensation

QCD under B field Neutron star

Chiral Magnetic effect

CME seen at RHIC? (STAR prl '09)
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Chiral Magnetic effect

» CME seen at RHIC? (STAR prl '09)
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x VTl ¥ STAR 4
= A 0 HUING ]
N L AHIING + v, ]
' 0.2F © UrQMD -
< Tt O MEVSIM ]
+ J
3 4
£ ¥
[7/] 3 ¥
o] L -
o L i
~ -
[ ¥ ]
0.4 .
i ¥ Red : same charge | ]
+ Blue: opp charge 4
060, ettt

70 60 50 40 30 20 10
% Most central

» May be (see talk by Bzdak at HIC10)
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» CME seen at RHIC? (STAR prl '09)

x10°
~ [T T T T T T T
“a 0.4F Au+Au 200 GeV ]
o YL ¥ STAR
= A 0 HUING
N A HUING +v, J
Ve © UrQMD .
o L 0 MEVSIM 4
+ A
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~ (1] 5
) L
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L o0
-0.2 -} ¥ N
i N
0.4 .
i ¥ Red : same charge | ]
L + Blue: opp charge 4
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% Most central

» May be (see talk by Bzdak at HIC10)
» May be not. (Muller+Schafer arXiv:1009.1053)
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Quark matter under strong B field:

» Under strong B field quark spectrum takes:

Ea=—p+1/kZ24+2|gB|n.
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Quark matter under strong B field:

» Under strong B field quark spectrum takes:

Ea=—p+1/kZ24+2|gB|n.

» Quark propagator under B field is given as

o0

Sr(x) = D (-1)" /k e kxe=kL/19BIS, (B, k)
n=0
D.(gB, k)

[(1+ i€)ko + p]* — kZ — 2[qB|n’

. 2k2 2k2 2k2
Dn, = 2K, |P-L, =L | - P L, L 4 Ll —L
[ <|q3\> + 1<|q8\)]+ Kibns (|qs| ’
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Sn(gB, k) =




Vector condensation
QCD under B field Neutron star

Chiral Magnetic effect

» Anomalous current for LH fermions at one-loop

d*k
(2m)*

Af () = (YY) = —/ Tr (’yag(k)L) :
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» Anomalous current for LH fermions at one-loop

4
AY () = (Dry™ L) = —/ (gﬂl;lTr

» Matter-dependent part is finite and explicitly calculable:

(’Yag(k)L) .

T
Al = A%(u, B) = A°(0.8) = ' 54 B)
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Chiral Magnetic effect

» Anomalous current for LH fermions at one-loop

4
AY () = (Dry™ L) = —/ (gﬂl;lTr

» Matter-dependent part is finite and explicitly calculable:

(’Yag(k)L) .

T
Bfiwe = 80, B) — 8°(0.B) = dif 5 A% B)
0 o
» We change variables:

Kk — K =k +u®pu, u®=(1,0)
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Chiral Magnetic effect

» Differentiating with respect to the chemical potential, we get

0. . mE
%S = je bl nz_(:)(—l) D,,27T16(k”2 —Ap) 6(k° — p)
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Chiral Magnetic effect

» Differentiating with respect to the chemical potential, we get
68# = ie \‘73\ Z )"D 27715(/(2 An) 6(k° — p)
> Integrating over /a, we get
A = 9B [ o1 + 2g Z/‘”
where 7 = e*12 gign(gB) + g™ and

/d,u/ KOS (K2 — A, - 6(KO — ') = BE_5P0.
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Vector condensation
QCD under B field Neutron star

Chiral Magnetic effect

The Fermi momentum at the n-th Landau level:

V2 =2|gB|n, if > 2|qB|n;

(n) B) =
pe (1. B) 0, otherwise.

u
(2lgBIn )"

( 2|qB| )1/2 /

™ .. ) ©
P PF Pe
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» The density of states

|98 3 p(F”)(uL,B)'

ng =
47 T

n
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Vector condensation
QCD under B field Neutron star

Chiral Magnetic effect

» The density of states

_leBl 3 L :) '

47 T
n

ng

» As A%(0, B) = 0, the anomalous electric (axial) vector
currents become

3‘725 0
Sy =q(B7 +03%) = 3T Jua+5qn,
2
B
SB=q(B7 -8R = 03I 5u+5qna.
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No more corrections

» Full contributions to the anomalous current:

6rmat(Aa G; H)

() = .
0Aq A=0=G
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Vector condensation
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No more corrections

» Full contributions to the anomalous current:

6rmat(Aa G; H)

() = .
6’404 A=0=G

» The full effective action is obtained by two steps:
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Anomalous Currents

» Matter contribution to the anomalous current:

 OTma(A) 6

# 0
o — — lir .,/
<J >mat 5Aoc 5Ao¢ /0 du 8ul ('A P ) )

29/32



Vector condensation
QCD under B field Neutron star
Chiral Magnetic effect

Anomalous Currents

» Matter contribution to the anomalous current:
Ol mat (A) ) w0 ,
= = dy' —T(A:; ,
mat T SAL 0A, /0 W A

» When derivative acts on the loop, we get vertex correction:

('fuTr[A& < Spl =Te[ASy - K, - - Sp] 277 S(kit )O (K — pa) -

{(J%)
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Anomalous Currents

» Because the electric charge is not renormalized
(Ademollo-Gatto theorem), the vertex correction should
vanish.

30/32



Vector condensation

QCD under B field Neutron star
Chiral Magnetic effect

Anomalous Currents

» Because the electric charge is not renormalized
(Ademollo-Gatto theorem), the vertex correction should

vanish.
» Furthermore the density of states is also not subject to
corrections due to interaction. (Luttinger theorem)
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Anomalous Currents

» Because the electric charge is not renormalized
(Ademollo-Gatto theorem), the vertex correction should
vanish.

» Furthermore the density of states is also not subject to
corrections due to interaction. (Luttinger theorem)

> The one-loop result is exact.
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Conclusion

» Magnetic field is relevant in QCD if B > 1019 G.
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Conclusion
Conclusion

Conclusion

» Magnetic field is relevant in QCD if B > 1019 G.

» We derive an effective theory for LLL QCD, which has a new
marginal four-quark interactions.

» Scale separation between chiral symmetry breaking and
confinement.

» LLL quarks are one dimensional and does not contribute to
running QCD coupling.

» Condensation along the vector channel occurs, when
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Conclusion

» The vector condensation is being calculated in the effective
theory (DKH2014).
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» We show that magnetars cool too quickly by emitting axions
if B> 10°G.

» We calculate the spontaneous generation of anomalous
current of dense quark matter under the magnetic field.

32/32



Conclusion
Conclusion

Conclusion

» The vector condensation is being calculated in the effective
theory (DKH2014).

» We show that magnetars cool too quickly by emitting axions
if B> 10°G.

» We calculate the spontaneous generation of anomalous
current of dense quark matter under the magnetic field.

» The one-loop is shown to be exact:

2B
Jy = 5a3g 5 1A A+0%gn
’B
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