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Electromagnetic duality in Maxwell equations

Maxwell equation without electric currents

∇ · ~E = 0, ∇ · ~B = 0

∇× ~E = −∂t~B, ∇× ~B = ∂t ~E

or, in a relativistic form

∂µFµν = 0, ∂∗µFµν = 0

Their form is invariant under a SO(2) transformation(
E ′
B′

)
=

(
cosα sinα
− sinα cosα

)(
E
B

)
However the Maxwell action S = 1/2

∫
d4x (E2 − B2) does not share the invariance.

There are two approaches to construct an invariant action

Zwanziger(1968): Introduce two vector potential Aµ and Bµ.

Deser and Teitelboim(1976): Use physical degree of freedom AT

later it becomes Schwarz and Sen (1994)



Classical Electrodynamics

Classical electrodynamics is described by the action

S =

∫
d4x

[
1
4

FµνFµν −
1
2

Fµν(∂µAν − ∂νAµ) + Jµ
(e)

Aµ
]

Then the equation of motion can be found by taking variations of F and A.

∂νFµν = Jµ
(e)

(Gaus law, Ampere law)

∂∗νFµν = 0 (Faraday law)

with ∗Fµν = 1/2εµνλτFλτ and the Lorentz force is

Fµ =

∫
d3x

[
Fµν(~x , t)J(e)ν(~x , t)

]
The currents are

Jµ
(e)

(x) =
∑

qi

∫
δ(x − zi (si ))

dzµi
dsi

dsi

in the case of point particles and

Jµ
(e)

(x) =
∑

qi ψ̄iγ
µψi

in the case of Dirac theory.



Electromagnetic duality in Maxwell equations

Maxwell equation with the magnetic current (as well as the usual electric current):

∂νFµν = Jµ
(e)

∂ν
∗Fµν = Jµ

(m)

the related Lorentz 4-force

Fµ =

∫
d3x

[
Fµν(~x , t)J(e)ν(~x , t) + ∗Fµν(~x , t)J(m)ν(~x , t)

]
These are invariant under the SO(2) duality rotation

{F ′µν = cosαFµν + sinα ∗Fµν}(
J′µ

(e)

J′µ
(m)

)
=

(
cosα sinα
− sinα cosα

)( Jµ
(e)

Jµ
(m)

)
.

Another form of the first(
~E ′
~B′

)
=

(
cosα sinα
− sinα cosα

)(
~E
~B

)
.



Remarks

Some Remarks

Lagrangian is not invariant

Fµν 6= ∂µAν − ∂νAµ
We need two vector potential Aµ and Bµ → Zwangziger action

Dirac-Schwinger quantization rule: q1g2 − q2g1 = 4π × integer

Possible generalization

Possible extension of ‘axion’ interaction term θ∗FµνFµν → Axion electrodynamics
of Wilczek.

Enlargement of symmetry: from SO(2) to SL(2,R)
after inclusion of dilaton as well as axion to the system

Our aim is to construct a local action for a dilaton-axion-electrodynamics with the
SL(2,R) symmetry.

We will use a shorthand notations
(A ∧ B)µν = AµBν − AνBµ , ∗Fµν = 1

2 εµνλτFλτ , (n · F )µ = nνFνµ and and
(∂ ∧ A)µν = ∂µAν − ∂νAµ



Zwanziger action 1968

Two vector potential for the field strength F

F = n∧[n·(∂∧A)]− ∗{n∧[n·(∂∧B)]}
nµ is a fixed, spacelike, normalized four vector with the condition nµnµ = 1. which is
related with the direction of string attached to the monopole.
Action for the electrodynamics:

S = SZ (A,B) +

∫
d4x [Jµ

(e)
Aµ + Jµ

(m)
Bµ]

Zwanziger action: Zwanziger Phys.Rev.D3(1971)880

SZ (A,B) = −
1
2

∫
d4x

{
[n·(∂∧A)]·[n· ∗(∂∧B)]

− [n·(∂∧B)]·[n· ∗(∂∧A)] + [n·(∂∧A)]2 + [n·(∂∧B)]2
}
.

Currents for point particles

Jµ
(e)

=
∑

j

qj

∫
dsj

dzµj (sj )

dsj
δ4(x − zj (sj )),

Jµ
(m)

=
∑

j

gj

∫
dsj

dzµj (sj )

dsj
δ4(x − zj (sj ))

Currents in terms of Dirac fields

Jµ
(e)

=
∑

j

qjψj (x)γµψj (x), Jµ
(m)

=
∑

j

gjψj (x)γµψj (x),



Properties of Zwanziger action

n · F = n · (∂ ∧ A) and n ·∗ F = n · (∂ ∧ B)

SO(2)-duality invariance(
A

′µ

B
′µ

)
=

(
cosα sinα
− sinα cosα

)(
Aµ
Bµ

)

Euler-Lagrange equation from the action reproduces the Maxwell equation
correctly
Particle equation of motion (Dirac Veto)

m
d
ds

[
uµ
√

u2

]
= [e(∂ ∧ A)µν + g(∂ ∧ B)µν ]uν

= (eF · u + g ∗F · u) + euν(n · ∂)−1 ∗(n ∧ J(m))µν − guν(n · ∂)−1 ∗(n ∧ J(e))µν︸ ︷︷ ︸
The string is described by the Green function
(n·∂)−1(x , x ′) = 1

2{θ[n·(x − x ′)]− θ[−n·(x − x ′)]}δ3
n(x − x ′)

Lorentz invariance is not manifest, but

n ∧
∂

∂n
L = terms vanishing outside of string

In quantum mechanics, rounding a string produces a phase factor which becomes
invisible by the Dirac quantization rule.



Extended system

Maxwell equations with dilaton and axion fields ( φ , a ): (Gaillard and Zumino, NP
B193(1981))

∂ν
∗Gµν = Jµ

(m)
,

∂νHµν = Jµ
(e)

(Hµν(x) ≡ e−φ(x)Gµν(x)− a(x)∗Gµν(x))

the Lorentz force law

Fµ =

∫
d3x

[
Gµν(~x , t)J(e)ν(~x , t) + ∗Hµν(~x , t)J(m)ν(~x , t)

]
.

SL(2,R) Duality transformation(
G′µν
∗H′µν

)
=

(
s r
q p

)(
Gµν
∗Hµν

)
τ ′ =

pτ + q
rτ + s

, (τ(x) ≡ a(x) + i e−φ(x))

(
J′µ

(e)

J′µ
(m)

)
=

(
p −q
−r s

)( Jµ
(e)

Jµ
(m)

)
p, q, r , s are real numbers satisfying the condition ps − qr = 1,



Vector potentials

Q1: What is the vector potential?
Q2: What is the invariant action?

First note that
∂∗ν (G − (n · ∂)−1 ∗(n ∧ J(m)))µν = 0

Which implies that
Gµν = (∂∧A)µν + (n·∂)−1 ∗(n∧J(m))µν .

By the same token

Hµν ≡ e−φGµν − a ∗Gµν = −∗(∂∧B)µν − (n·∂)−1(n∧J(e))µν .

It follows that

n·G = n·(∂∧A),

n· ∗G = eφ[n·(∂∧B)− a n·(∂∧A)].

There exists an identity for a rank two tensor Q (Zwanziger)

Q = n∧(n·Q)− ∗[n∧(n· ∗Q)],

Hence we may conclude

G = n∧[n·(∂∧A)]− eφ ∗{n∧[n·(∂∧B)− a n·(∂∧A)]}.



Duality transformation of vector potentials

And then
∗G = eφn∧[n·(∂∧B)− a n·(∂∧A)] + ∗{n∧[n·(∂∧A)]}

H = eφ(a2 + e−2φ)n∧[n·(∂∧A)]− ∗{n∧[n·(∂∧B)]} − a eφn∧[n·(∂∧B)].

SL(2,R) duality transformation rules for the vector potentials:(
A

′µ

B
′µ

)
=

(
s r
q p

)(
Aµ
Bµ

)
Remember

τ ′ =
pτ + q
rτ + s

, (τ(x) ≡ a(x) + i e−φ(x))

One can check the SL(2,R) transformation rules for the field strengths ∗G and H



Duality symmetric action: non-local

We start from a non-local action (Schwinger-Yan type)

It is a first-order and we take B and ∗G as independent variables

S =

∫
d4x

[
1
4

e−φ ∗Gµν ∗Gµν −
1
2
∗Gµν(∂µBν − ∂νBµ) +

1
4

a ∗Gµν Gµν
]

+

∫
d4x

[
Jµ

(e)
Aµ(G) + Jµ

(m)
Bµ
]
,

A(G) denotes the nonlocal function of G

Aµ = (n·∂)−1(n·G)µ.

Note: variation of B and ∗G yields

∂ν
∗Gµν =Jµ

(m)
,

e−φ ∗Gµν + aGµν =∂µBν − ∂νBµ − (n·∂)−1 ∗(n∧J(e))µν ,

Now we may take A and B as independent variables instead of B and ∗G and
transformation rules are already found.



Duality symmetric action: local

Noting

1
4

e−φ ∗Gµν ∗Gµν −
1
2
∗Gµν(∂µBν − ∂νBµ) +

1
4

a ∗Gµν Gµν

=
1
4
∗Gµν ∗Hµν −

1
2
∗Gµν(∂µBν − ∂νBµ),

We find

S =−
1
2

∫
d4x

{
[n·(∂∧A)]·[n· ∗(∂∧B)]− [n·(∂∧B)]·[n· ∗(∂∧A)]

+ eφ(a2 + e−2φ)[n·(∂∧A)]2 + eφ[n·(∂∧B)]2

− 2aeφ[n·(∂∧A)]·[n·(∂∧B)]
}

+

∫
d4x

[
Jµ

(e)
Aµ + Jµ

(m)
Bµ
]
.

( Zwanziger action is recovered setting φ = a = 0)

Using the complex scalar τ ,

S =
1
2

∫
d4x

{
Im
[
eφ(n·[τ∂∧A− ∂∧B])·(n· ∗[τ̄∂∧A− ∂∧B])

]
− Re

[
eφ(n·[τ∂∧A− ∂∧B])·(n·[τ̄∂∧A− ∂∧B])

]}
+

∫
d4x

[
Jµ

(e)
Aµ + Jµ

(m)
Bµ
]
.



Properties

We have found a local action involving electromagnetic vector potential A and B,
and dilaton φ, and axion a.

It is invariant under SL(2,R) duality transformation

It reproduces the right field equations.

In free space, where J(e) = J(m) = 0

∂∧B = e−φ ∗(∂∧A) + a (∂∧A).

There are only one independent vector potential.

Quantization will change the symmetry from SL(2,R) to SL(2,Z). The four
parameters p, q, r , and s should be integers with the condition ps − qr = 1 to be
compatible with the Dirac-Schwinger condition e1g2 − e2g1 = 2π × integer.



Constant-valued scalars φ and a

When both of scalars φ and a have constant values, we can remove a using the duality
transformation

A′µ = e−φ/2Aµ, B′µ = eφ/2(−aAµ + Bµ)

Choice of SL(2,R) parameters : p = eφ/2, q = −aeφ/2, r = 0 and s = e−φ/2

τ ′ = pτ+q
rτ+s = i , this means a′ = 0 and φ′ = 0.

We get the old Zwanziger action:

S =−
1
2

∫
d4x

{
[n·(∂∧A′)]·[n· ∗(∂∧B′)]− [n·(∂∧B′)]·[n· ∗(∂∧A′)]

+ [n·(∂∧A′)]2 + [n·(∂∧B′)]2
}

+

∫
d4x

[
eφ/2(Jµ

(e)
+ aJµ

(m)
)A′µ + e−φ/2Jµ

(m)
B′µ
]

The charges are changed

q′ = eφ/2(q + ag), g′ = e−φ/2g

Recall the Witten’s formula



Born-Infeld theory

Born-Infeld electrodynamics is a non-linear field theory with the duality symmetry.
(BI Proc. Roy. Soc. A144(1934); Schrödinger A150(1935))

Gibbons and Rashed extend the system to include dilaton and axion (GR PL
B365(1996); Nucl. Phys. B454(1995))

LGR = 1−
√

1 +
1
2

e−φG2 −
1

16
e−2φ(G∗G)2 +

1
4

a(G∗G)

Equation of motion

∂ν
∗Gµν = Jµ

(m)
,

∂νHµν = Jµ
(e)
,

with

Hµν =
e−φGµν − 1

4 e−2φ(G∗G) ∗Gµν√
1− 1

2 e−φ(∗G)2 − 1
16 e−2φ(G∗G)2

− a ∗Gµν

Now we know the drill.

The first eq. determines G = (∂ ∧ A)+ magnetic current dependent term.

The 2nd eq. determines H =∗ (∂ ∧ B)+ electric current dependent term.



Vector potentials

We can identify n · G, n ·∗ G (But the relation between H and G is quite
complicated.)

Find expressions for non-linear terms (GG)2, (G∗G)2

After some algebras, we found

G =n∧[n·(∂∧A)]−
1
√
M

(
eφ + [n·(∂∧A)]2

)
∗{n∧[n·(∂∧B)]}

+
1
√
M

(
aeφ + [n·(∂∧A)] · [n·(∂∧B)]

)
∗{n∧[n·(∂∧A)]},

H =− ∗{n∧[n·(∂∧B)]} −
1
√
M

(
eφa + [n·(∂∧A)]·[n·(∂∧B)]

)
n∧[n·(∂∧B)]

+
1
√
M

(
e−φ + a2eφ + [n·(∂∧B)]2

)
n∧[n·(∂∧A)],

where

M =1 + e−φ(1 + e2φa2)[n·(∂∧A)]2 + eφ[n·(∂∧B)]2 − 2eφa[n·(∂∧A)]·[n·(∂∧B)]

+ [n·(∂∧A)]2[n·(∂∧B)]2 −
(

[n·(∂∧A)]·[n·(∂∧B)]
)2



SL(2,R) invariant BI action

To find the BI action in terms of A and B, let us start from the Schwinger-Yan type
action

S =

∫
d4x

[
1−

√
X(G)−

1
2
∗Gµν(∂µBν − ∂νBµ) +

1
4

a ∗Gµν Gµν
]

+

∫
d4x

[
Jµ

(e)
Aµ(G) + Jµ

(m)
Bµ
]
,

where
X ≡ 1−

1
2

e−φ( ∗G)2 −
1
16

e−2φ(G∗G)2

Independent variables are: Bµ and ∗Gµν . A(G) and X are specified by these.

Following the steps same with the previous analyses, we found

S =

∫
d4x

[
1−

1
2

(n · [∂∧A]) · (n · ∗[∂∧B]) +
1
2

(n · [∂∧B]) · (n · ∗[∂∧A])

−
√
M+ Jµ

(e)
Aµ + Jµ

(m)
Bµ
]



Conclusion

We constructed local actions with two vector potentials, dilaton and axion for
linear Maxwell system
non-linear Born-Infeld system

SL(2,R) symmetry is manifest

It is n-dependent but the physics is n-independent

Lorentz symmetry is hidden.

We can study quantum effects

There exit other formulations–Schwartz and Sen, Deser,...

Coupling to gravity is interesting

Other spin case (especially spin-2) is interesting

Quantum properties should be interesting

Application to condensed matter (topological insulator)

Application to ADS theory (multi-faces Janus system)
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