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INTRODUCTION

Lagrange’s approach

• Newton’s equations for N point-particles ! coarse graining using a smooth

density function ! fluid dynamics

Point particle ⌘ a unitary irreducible representation (UIR) of the Poincaré group

Classical action which upon quantization gives a UIR of a group = A co-adjoint orbit

action

Can we construct fluid dynamics as

Co-adjoint orbit action ! coarse graining ! fluid dynamics ?
Advantages:

• A single formalism where symmetries are foundational

• Gauge fields ! Abelian and nonabelian Magnetohydrodynamics

• Spin, magnetic moment effects

• Gravity easily included (Mathisson-Papapetrou equation)

• Anomalous symmetries (chiral magnetic effect, chiral vorticity effect, etc.)
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MOTION OF PARTICLES WITH INTERNAL DEGREES OF FREEDOM

Consider nonrelativistic particles with internal “color” degrees of freedom. (Could be

spin).

Start with SU(2) color, denote the color charge as Qa(t). Equations of motion are (WONG)

Q̇a � f abc Ac
i ẋi Qb = 0

ṗi � F a
ij ẋj Qa = 0

These can be obtained from the action

S =

Z 
1
2

m ẋ2 + Aa
i Qaẋi

�
� i n

Z
Tr(�3 g�1ġ), g 2 SU(2)

with Qa = n
2 Tr(g �3 g�1�a).

The crucial Tr(�3 g�1ġ) term was introduced, in this and related contexts, by

BALACHANDRAN & collaborators in the 70s and early 80s. (Also related to BOREL-WEIL-BOTT

theory and to work by KOSTANT, SOURIAU, KIRILLOV + ....)
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THE CO-ADJOINT ORBIT ACTION

Under g ! g exp(i �3
2 ') it changes by �S = n �'. For closed paths in SU(2),

�' = 2⇡ ⇥ integer ) n 2 Z.

The co-adjoint term leads to something like a monopole field on S2 = SU(2)/U(1),

which is the phase space for the “color” degrees of freedom.

Quantizing g =) one unitary irreducible representation of SU(2), with j-value = n/2,

leading to standard description of color by matrices.

For group G, we have rank(G) ⌘ r mutually commuting generators in G, rank(G)

coefficients, and g 2 G. The action is given by

S = �i
rX

s=1

ws

Z
d⌧ Tr(qs g�1ġ)

qs are diagonal generators of G, and {ws} must be the weights for a UIR of G. Upon

quantization, this gives the corresponding UIR.
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THE CO-ADJOINT ORBIT ACTION (cont’d.)

For relativistic point-particles, we must use this action with G = Poincaré group

We consider Poincaré group = contraction of de Sitter group; this makes some traces

easier to define.

For de Sitter algebra, use standard Dirac �-matrices with

Jµ⌫ =
i

4
[�µ, �⌫ ], Pµ =

�µ
r0

, Poincaré = r0 ! 1 limit

A general element is given by

g = exp (i�↵ x↵/r0) ⇤, ⇤ = B(p)R

B(p) =
1

p
2m(p0 + m)

2

64
p0 + m ~� · ~p
~� · ~p p0 + m

3

75

⇤ is an element of the Lorentz group, R is a pure spatial rotation generated by J12, J23, J31,

and m =
p

p2.
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THE CO-ADJOINT ORBIT ACTION (cont’d.)

The action is given by

S = i m r2
0

Z
d⌧ Tr

✓
�0

r0
g�1 dg

d⌧

◆
+ i

n

2
Tr(J12g�1 dg) � H

Using B�0B�1 = �↵ p↵/m and taking r0 ! 1, we find, for the Poincaré group,

S = �
Z

d⌧ pµ ẋµ + i
n

4

Z
d⌧ Tr(⌃3 ⇤

�1 ⇤̇) � H, ⌃3 =

2

64
�3 0

0 �3

3

75

H generates ⌧-evolution, so we should set it to zero as a constraint on quantum states.

This leads to the wave equation.

The addition of the term e Aµ ẋµ leads to relativistic charged point-particle dynamics,

with magnetic moment (g = 2) and spin-orbit coupling.

V.P. NAIR Group Theory & Fluids June 12, 2014 6 / 31



GENERALIZING TO FLUIDS

Consider the point-particle à la WONG again. Take a collection of particles indexed by �.

S = �in
Z

dt Tr(�3 g�1ġ) ! S = �i
Z

dt
X

�

n�Tr(�3 g�1
� ġ�)

We can take the continuum limit by � ! ~x,
P

� ! R
d3x/v, n�/v ! ⇢(x).

This leads to

S = �i
Z

d4x ⇢ Tr(�3 g�1ġ)

where g = g(~x, t).

This suggest the relativistic form

S = �i
Z

jµ Tr(�3 g�1@µg)

The difficulty for Poincaré is about what replaces ẋµ. Only 3 of the 4 components are

independent; also positions of particles are not well defined in the fluid version.
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THE LAGRANGIAN FOR ORDINARY FLUID DYNAMICS

Ordinary fluid dynamics can be described by a Poisson bracket system

[⇢(x), ⇢(y)] = 0

[vi(x), ⇢(y)] = @xi�
(3)(x � y)

[vi(x), vj(y)] = �!ij

⇢
�(3)(x � y)

!ij = (@ivj � @j vi).

H =

Z
d3x


1
2
⇢ v2 + V (⇢)

�

We get the usual equations of fluid motion with pressure p = ⇢ @V
@⇢ � V .

The PBs can be summarized as

[F ,G] =

Z 
�F

�⇢
@i

✓
�G

�vi

◆
� �G

�⇢
@i

✓
�F

�vi

◆
� !ij

⇢

�F

�vi

�G

�vj

�

for any two functions F , G.
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THE LAGRANGIAN FOR ORDINARY FLUID DYNAMICS (cont’d.)

The helicity C is given by

C =
1

8⇡

Z
✏ijk vi @j vk = CS term for vi

The helicity Poisson-commutes with all local observables, [F ,C ] = 0 for all F

=) C is superselected.

Usually if [⇠a , ⇠b] = K ab , the Lagrangian is of the form Ab ⇠̇b , where @aAb � @bAa = K �1
ab .

Here K is not invertible, �C/�vi is a zero mode.

This is the difficulty in writing down a Lagrangian.

The solution is also clear: We must fix the value of C and seek a parametrization for the

velocity which keeps the same value of C .

Such a parametrization exists. It is the so-called Clebsch parametrization,

vi = @i✓ + ↵ @i�

✓, ↵, � are arbitrary functions.
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THE LAGRANGIAN FOR ORDINARY FLUID DYNAMICS (cont’d.)

For vi parametrized in terms of well-defined ✓, ↵, �,

C =

Z
(total derivative) = 0

A suitable action which gives the PBs is now (C.C. LIN)

S =

Z
⇢ ✓̇ + ⇢↵ �̇ �

Z 
1
2
⇢ v2 � V

�

We can also write this as

S =

Z
Jµ (@µ✓ + ↵@µ�) �

Z "
J 0 � J iJ i

2 ⇢
+ V

#

J 0 = ⇢; elimination of the auxiliary J i leads to the previous version.
R

J 0 is a constant.

The relativistic generalization is

S =

Z
Jµ (@µ✓ + ↵@µ�) �

Z
f (n)

f (n) = n + V (n), n2 = J 2 = (J 0)2 � J iJ i .
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GROUP-THEORETIC DESCRIPTION OF FLUIDS

The lesson from this is to treat

• Translational part of action ! Clebsch parametrization

• Rest of the action in terms of the co-adjoint orbit version

The general action is thus

S =

Z
d4x

h
jµ (@µ✓ + ↵@µ�)� i

4
jµ(s) Tr(⌃3 ⇤

�1@µ⇤) + i
X

a

jµ(a)Tr(qa g�1Dµ g)

�f ({n}))
i
+ S(A)

Generally, we must have different currents jµ, jµ(s), jµ(a) for mass flow, spin flow and the

transport of other quantum numbers.

Coupling to gauge fields follow from covariant derivatives on the group elements
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GROUP-THEORETIC DESCRIPTION OF FLUIDS (cont’d.)

f ({n}) depends on all invariant combinations of the currents and characterize the

nature of the fluid, n =
p

jµ jµ, na =
q

jµ(a) jµ (a), etc.

The group-valued fields are related to flow velocities and currents and given by the

equations of motion,

1
n

@f

@n
jµ = @µ✓ + ↵@µ�

1
na

@f

@na
jµ (a) = i Tr (qa g�1Dµ g), etc.

Remark: The Clebsch parametrization can also be written in a “group” form,

�i Tr(�3 g�1dg) = d✓ + ↵ d�

where g 2 SU(1, 1),

g =
1p

1 � ūu

0

B@
1 u

ū 1

1

CA

0

B@
ei✓/2 0

0 e�i✓/2

1

CA , ↵ =
2 ūu

(1 � ūu)
, � = � i

2
log(u/ū)
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GROUP-THEORETIC DESCRIPTION OF FLUIDS (cont’d.)

We will discuss 3 examples

• SU(2) internal symmetry (Nonabelian Magnetohydrodynamics)

• Magnetohydrodynamics including spin, magnetic moment and spin-orbit effects

• Spin and coupling to gravity

We will also discuss generalization to include anomalies
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SU (2) MAGNETOHYDRODYNAMICS

Consider the action (BISTROVIC, JACKIW, LI, NAIR, PI)

S =

Z
Jµ (@µ✓ + ↵@µ�)� i

Z
jµ Tr(�3 g�1Dµg)�

Z
f (n) + SYM

Dµg = @µg + Aµ g Aµ = �i ta Aa
µ, ta = 1

2�
a

Jµ = nm Uµ, U 2 = 1

jµ = n uµ, u2 = 1

We also include a background field which couples to the color charge.
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SU (2) MAGNETOHYDRODYNAMICS (cont’d.)

The current which couples to Aa
µ is given by

J aµ = Tr(�3 g�1tag) jµ = Qa jµ, Qa = Tr(�3 g�1tag)

This is the Eckart form for currents.

The equations of motion are

@µjµ = 0

(DµJµ)a = 0

n uµ@µ(u⌫ f 0)� n @⌫ f 0 = Tr(JµFµ⌫) (“Euler equation”)

The first two equations lead to the fluid generalization of the Wong equations

uµ(DµQ)a = (D0Q)a + ~u · (~DQ)a = 0
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SU (2) MAGNETOHYDRODYNAMICS (cont’d.)

We also have

@µTµ⌫ = Tr (JµFµ⌫)

Tµ⌫ has the perfect fluid form.

The nonabelian charge density ⇢ = ⇢ata (which is the time-component of J aµ)

transforms, under gauge transformations, as

⇢ ! ⇢0 = h�1⇢ h, h 2 SU(2)

We can diagonalize ⇢ at each point by an (~x, t)-dependent transformation, ⇢diag = ⇢0�3.

Then ⇢ = g ⇢diag g�1, or

⇢a = ⇢0 Tr(g �3 g�1 ta) = j0 Tr(g �3 g�1 ta)

g is the transformation which diagonalizes the charge density at each point. The

eigenvalues are gauge-invariant and are represented by n. Their flow is given by uµ.

Under a gauge transformation, g ! h�1 g .
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SU (2) MAGNETOHYDRODYNAMICS (cont’d.)

There are two (related) charge densities, j0 and the nonabelian charge density ⇢a = J a 0.

The basic (new) Poisson brackets are

{j0(~x), j0(~y)} = 0

{j0(~x), g(~y)} = �i g(~x)
⇣�3

2

⌘
�(x � y)

{⇢a(~x), ⇢b(~y)} = f abc⇢c(~x) �(x � y)

{⇢a(~x), g(~y)} = �i
⇣�a

2

⌘
g(~x) �(x � y)

Another interesting observation is that, since ⇧3[SU(N )] = Z, there are skyrmion-type

solitons in any nonabelian magnetohydrodynamics. (DAI, NAIR)

Remark: These equations of motion and charge algebra have some points of overlap with

the work of GIBBONS, HOLM, KUPERSHMIDT
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ABELIAN MAGNETOHYDRODYNAMICS WITH SPIN

Consider a special case where mass transport and charge transport are described by the

same flow velocity.

This applies when we have one species of particles with the same charge.

Further, for dilute systems, if we neglect the possibility of spin-singlets forming (and

moving independently), we can take spin flow velocity ⇡ charge flow velocity

The action for this case is (KARABALI, NAIR)

S = S(A) +
Z

d4x
h

jµ (@µ✓ + ↵@µ� + eAµ)� i

4
jµ Tr(⌃3 ⇤

�1@µ⇤)� f (n,�)
i

⇤ = B R contains the same velocity uµ as in jµ = n uµ.

F depends on n and � = Sµ⌫ Fµ⌫ , where Sµ⌫ is the spin density,

Sµ⌫ =
1
2

Tr (⌃3 ⇤
�1 Jµ⌫ ⇤), Jµ⌫ =

i

4
[�µ, �⌫ ]
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ABELIAN MAGNETOHYDRODYNAMICS WITH SPIN (cont’d.)

Having the same flow velocity can be satisfied by

2
n

@f

@n

@f

@�
= e

This is the fluid analog of the requirement of g = 2 for point-particles.

The equations of motion are the Maxwell equations +

u↵@↵(f 0 u⌫)� @⌫ f 0 = e
h

u� F�⌫ � 4
s2f 0 @⌫S��(SFS � FSS)�� � · · ·

i

u↵@↵Sµ⌫ =
1
f 0

h
S �
µ (eF�⌫ + G�⌫)� S �

⌫ (eF�µ + G�µ)
i

� 4e

s2f 02
(uµS �

⌫ � u⌫S �
µ )@�S⇢�(SFS � FSS)⇢� + · · ·

G�⌫ = u� @⌫ f 0 � u⌫ @�f 0

(S F S � F S S)�� = S ⇢
� F⇢⌧ S⌧

� � F ⇢
� S⇢⌧ S⌧

�

Spin density is subject to precession effects due to pressure gradient terms as well as due

to the external field.
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GRAVITY AND SPIN

Consider spin transport in the fluid in a gravitational background.

Specializing the general fluid action to the Lorentz group (to describe spin), with

covariant derivatives appropriate to a general curved manifold,

S[e,!, j,⇤] =

Z
det e


� i

2
jµ Tr(⌃3 ⇤

�1Dµ(!̄(e))⇤)� f (n)
�

� 1
32⇡ G

✏abcd

Z
ea ^ eb ^ Rcd(!)

Here we use !̄(e) to avoid generating torsion via equations of motion,

!̄ab
µ = (e�1)⌫a@[µeb

⌫] � (e�1)⌫b@[µea
⌫] � (e�1)⇢a (e�1)�b@[⇢ec

�]eµc .
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GRAVITY AND SPIN (cont’d.)

The energy-momentum tensor is now

Tµ⌫ = T (f )
µ⌫ + 2r↵(jµQ↵

⌫ + j⌫Q↵
µ).

where T (f )
µ⌫ has the perfect fluid form,

T (f )
µ⌫ = n f 0 uµu⌫ � gµ⌫(n f 0 � f )

where Q↵� is the spin density,

Q↵� = (e�1)↵a (e�1)�b
1
2

Tr
⇣
⌃3 ⇤

�1 J ab ⇤
⌘

The conservation law may be written as

rµ T (f )µ⌫ � 2 (R↵�)
⌫
� j� Q↵� = 0

The second term is the fluid version of the spin-curvature coupling occurring in the

Mathisson-Papapetrou equation.
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INCORPORATING ANOMALIES

’t Hooft argument for the Wess-Zumino action for anomalies

Quarks Mesons
Baryons

Spectators

Anomaly
Cancellation

Confinement

Spectators

Wess-Zumino
Action �WZ

Fluid

Spectators

� ?

A similar argument for the fluid phase suggests an effective action for anomalies in terms

of fluid variables. What is this action?
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INCORPORATING ANOMALIES (cont’d.)

Since we have formulated fluid dynamics using group variables, this is easy. We can use

the same �WZ but using fluid group element instead of meson fields.

The suggestion is (NAIR, RAY, ROY)

S = �i
Z "

jµ3 Tr
✓
�3

2
g�1

L Dµ gL

◆
+ jµ8 Tr

✓
�8

2
g�1

L Dµ gL

◆
+ kµ

3 Tr
✓
�3

2
g�1

R Dµ gR

◆

+ kµ
8 Tr

✓
�8

2
g�1

R Dµ gR

◆
+ jµ0 Tr

⇣
g�1

L Dµ gL

⌘
+ kµ

0 Tr
⇣

g�1
R Dµ gR

⌘#

� f (n3,n8,n0,m3,m8,m0) + SYM (A) + �WZ (AL ,AR , gL g†
R)

�WZ (AL ,AR , gL g†
R) is the standard Wess-Zumino term �WZ (AL ,AR ,U) with U =) gL g†

R .

There are other ways to incorporate anomalies (SON & SUROWKA; SADOFYEV & ISACHENKOV;

ABANOV et al; BASAR, DUNNE, KHARZEEV; + many others); an approach somewhat similar to ours is

by SHU LIN.
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INCORPORATING ANOMALIES (cont’d.)

In full it is given by (WITTEN; KAYMAKCALAN, RAJEEV, SCHECHTER; + ...)

�WZ = � iN

240⇡2

Z

D
Tr(dU U�1)5 � iN

48⇡2

Z

M
Tr[(AL dAL + dAL AL + A3

L) dUU�1]

� iN

48⇡2

Z

M
Tr[(AR dAR + dAR AR + A3

R)U�1dU ]

+
iN

96⇡2

Z

M
Tr[AL dUU�1AL dUU�1 � AR U�1dU AR U�1dU ]

+
iN

48⇡2

Z

M
Tr[AL(dUU�1)3+AR(U�1dU)3 + dAL dU AR U�1� dAR d(U�1)AL U ]

+
iN

48⇡2

Z

M
Tr[AR U�1 AL U(U�1dU)2 � AL U AR U�1(dUU�1)2]

� iN

48⇡2

Z

M
Tr[(dAR AR + AR dAR)U�1 AL U � (dAL AL + AL dAL)U AR U�1]

� iN

48⇡2

Z

M
Tr[AL U AR U�1 AL dUU�1 + AR U�1 AL U AR U�1dU ]

� iN

48⇡2

Z

M
Tr[A3

R U�1 AL U � A3
L U AR U�1 + 1

2 U AR U�1 AL U AR U�1 AL ]

with U =) gL g†
R .
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ANOMALOUS EFFECTS

This action gives the chiral magnetic effect (& other anomaly related effects) for all flavor

gauge fields and chemical potentials (A0 components become the chemical potentials µ.)

The electromagnetic current, for example, is given by (previous refs, also CALLAN & WITTEN)

Jµ = Jµ3 +
e

16⇡2
✏µ⌫↵�Tr

h
Q(@⌫U U�1 @↵U U�1 @�U U�1

+U�1@⌫U U�1@↵U U�1@�U)
i

+i
e2

4⇡2
✏µ⌫↵�@⌫A↵Tr


Q2(@�U U�1 + U�1@�U) +

1
2
(Q@�U QU�1

�QUQ@�U�1)
i

We can restrict to two flavors by choosing

U = ei✓

2

64
V 0

0 1

3

75
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ANOMALOUS EFFECTS (cont’d.)

The current is now

Jµ = Jµ3 +
e

48⇡2
✏µ⌫↵�Tr(I⌫ I↵ I�) + i

e2

16⇡2
✏µ⌫↵� @⌫A↵ Tr

⇥
(⌃3L + ⌃3R) I�

⇤
+ Jµ✓

Jµ✓ = � e2

4⇡2
✏µ⌫↵� @⌫A↵ @�✓


2 +

1
4

Tr (⌃3L ⌃3R � 1)
�

I� = g�1
L @�gL � g�1

R @�gR , ⌃3L = g�1
L �3gL , ⌃3R = g�1

R �3gR .

If we further restrict to gL = gR , we get

Jµ✓ = � e2

2⇡2
✏µ⌫↵�(@⌫A↵) @�✓

Ji = � e2

4⇡2
(µL � µR)Bi

This reproduces the chiral magnetic effect which was originally calculated using

Feynman diagrams (KHARZEEV, MCLERRAN, WARRINGA, FUKUSHIMA + ....).

The full set of equations describe hydrodynamic transport of flavor charges.
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THE CHIRAL ISOSPIN EFFECT

The anomaly term �WZ also has terms proportional to Zµ, so there is also an induced

isospin current (CAPASSO, NAIR, TEKEL).

The relevant term is

�WZ = � Ne2

6⇡2
(cot 2✓W )

Z
✏µ⌫↵�Zµ@⌫A↵ @�✓

This leads to

J Z µ = � e

8⇡2
(cos 2✓W ) ✏µ⌫↵�F⌫↵ @�✓

J 3 µ =
e

8⇡2
(µL � µR)Bi

In terms of pion fields, J 3 µ ⇡ � 1
2 f⇡@µ⇧0 + · · · . So we can interpret this as a pion field of

gradient

@i⇧0 = � e

4⇡2 f⇡
(µL � µR)Bi

This can manifest itself as an asymmetry in the neutral pion distribution.
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ANOMALIES & CHIRAL VORTICITY EFFECT

Generally, there is a contribution even when the background fields are zero.

If we eliminate the group elements in favor of velocities, we get

Jµ = Jµ3 + Jµ✓ + i
e2

16⇡2
✏µ⌫↵� @⌫A↵ Tr

⇥
(⌃3L + ⌃3R) I�

⇤

+
1

16⇡2
✏µ⌫↵�@⌫Tr(g�1

L @↵gL g�1
R @�gR)

+
e

12⇡2
✏µ⌫↵�

"✓
@f

@n3

◆2

u3L ⌫ @↵u3L � �
✓

@f

@m3

◆2

u3R ⌫ @↵u3R �

#
.

A left-right asymmetry with nonzero vorticity can generate an electromagnetic current

Finally, we know that the standard model can have mixed gauge-gravity anomalies in

some restricted cases, due to the 6-form index density,

I6 =
i

384⇡3
(TrF ) Tr (R ^ R)
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MIXED GAUGE-GRAVITY ANOMALY

If up, down and strange are described by fluid variables, while charm is described as a

Dirac field, the fluid part can show an anomaly.

The hypercharge conservation law is changed to

@µJµ = �i
Nc

768⇡2

✏µ⌫↵�

p�g
Tr(Rµ⌫ R↵�).

The corrected energy-momentum tensor is given by the previous result +

T⌫�⇤
corr = �i

Nc

192⇡2

1p�g
r�

h
TrY (@µ✓) (R↵�)

��✏µ⌫↵� + (⌫ $ �)
i
.

The remaining trace is over the hypercharge values. If we replace ✓̇ by the chemical

potentials, as can be done for the chiral magnetic effect,

TrY (✓̇) ! 1
2


1
3
(µu

L + µd
L + µs

L) +
2
3
(µd

R + µs
R � 2µu

R)

�
.
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PROSPECTS

A number of new directions are suggested by this. Just to name a few:

• Relating the Poincaré group version to the formulation of fluid dynamics in terms

of the group of diffeomorphisms

• The chiral vorticity effect and the mixed anomaly effects may be significant in

certain gravitational backgrounds, such as cosmic strings.

• Exploring soliton solutions. (Topological solitons in the fluid are possible in this

formalism.)

• Quantum ground states for fluids can be meaningful in some contexts, as in liquid

Helium. How do they look in more general situations?
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Thank you
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