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IR dualities
IR dualities: different UV descriptions flowing in the IR to the same fixed point.

4d IR (Seiberg) dualities:

SU(Nc )Nf
←→ SU(Nf − Nc )Nf

+W1

SO(Nc)Nf
←→ SO(Nf − Nc + 4)Nf

+W2

USp(2Nc)Nf
←→ USp(2(Nf − Nc − 2))Nf

+W3

3d IR (Aharony,. . . ) dualities:

U(Nc)Nf
←→ U(Nf − Nc)Nf

+W ′
1

O(Nc )Nf
←→ O(Nf − Nc + 2)Nf

+W ′
2

USp(2Nc )Nf
←→ USp(2(Nf − Nc − 1))Nf

+W ′
3

Are these dualities in different space-time dimensions related?

If yes, how one explains the differences?
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Outline

The road from 4d to 3d

Examples

Partition functions

Summary
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From 4d to to 3d by dimensional reduction

Say we have an IR 4d duality between theories UV A
4 and UV B

4 .

Both these theories flow to the same CFT4 in the IR.

Let us consider the theories UV A,B
3 obtained by a dimensional reduction to 3d of UV A

4 .

That is same matter, same gauge interactions, just one coordinate less.

One finds that the two theories UV A,B
3 in general do not flow to the same IR CFT in 3d .

Moduli spaces in 3d might not match

3d theory has actually more symmetry than the 4d parent one. Some classical symmetries
are anomalous in 4d but are symmetries of the quantum theory in 3d .

This can be seen in the different partition functions on S2 × S1 and on

S3(Dolan,Spiridonov,Vartanov;Niarchos). 3d partition functions of UV A,B
3 refined with

fugacities/real masses for symmetries anomalous in 4d do not match, whereas the
unrefined ones do match.
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Why?

Why the duality does not survive the dimensional reduction?

4d duality means that physics described by UV A,B
4 when probed at energies

E << Λ, Λ̃, 1/R is the same.

The strong coupling scale Λ is given by Λ = exp(− 8π2

b g24
) .

After compactification g2
4 = 2πR g2

3 , Λ = exp(− 4π
b R g23

) .

3d duality means that the physics described by UV A,B
3 should be the same when probed

at E << g2
3 , g̃

2
3 when g2

3 , g̃
2
3 are held fixed.

However keeping g2
3 and g̃2

3 fixed and taking R → 0 also Λ→ 0.

The dimensional reduction limit, R → 0, does not commute with the low energy limit,
E << Λ, in which the theories are supposed to be dual!!
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From 4d to effective 3d theory

However, if we consider a 4d theory on a circle at energies E << 1/R it’s behavior is
effectively 3-dimensional.

There are though at least two caveats.

4d theories on a circle have scalars coming from P exp(i
∮
A3). These scalars can acquire

VEVs and parametrize the Coulomb branch of the theory on the circle. By definition they
are compact.

3d theories have scalars in their multiplet which also parametrize their Coulomb branches.
But they are not compact.

The effective 3d theory describing the 4d theory on a circle has non-perturbative
superpotentials W which the naive 4d reduction does not have. E.g. in case the theory
we put on the circle is SQCD with SU(N) gauge group one has

W = η Y , η ∼ Λb

where Y is the coordinate on the Coulomb branch. (W breaks explicitly the symmetry
which is anomalus in 4d)

Thus the effective 3d theories with the superpotentials and the compact Coulomb
branches have to be dual whereas the naively reduced ones do not.
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. . . . . .

From 3d effective theory to 3d UV theory

The final step is to find a 3d theory which will flow to the same effective one as the 4d

theory on the circle, UV A,B
3 (η)

One can find operators in 3d (built from monopoles) which flow to the Coulomb branch
coordinate Y.

In some cases the compact Coulomb branches are lifted by superpotentials and in others
one can focus on particular points of the Coulomb branch so that the compactness will
not be an issue.

The procedure outlined here is completely generic.

However, the actual details are very much case specific.

Once we have a 3d duality we can play many of the standard 3d games to generate new
dualities: real masses, gauging U(1)J etc
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. . . . . .

Example: 3d SU duality

Let us give an example of the procedure reducing SU(N) dualities in 4d to 3d.

4d Seiberg duality:

A : SU(N)Nf
, Q, Q̃ (RQ =

Nf − N

Nf
), W = 0

↕

B : SU(Nf − N)Nf
, q, q̃ (Rq =

N

Nf
), M (RM = 2RQ) , W = Mqq̃ .

Shlomo S. Razamat (IAS) 4d → 3d June 18, 2013 - KIAS 8 / 17
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SU(N): from 4d to 3d

Putting theories A and B on the circle one obtains effective 3d theories with same matter
content as in 4d but with the following superpotentials

A : W = ηY , B : W = Mqq̃ + η̃Ỹ , η η̃ ∼ 1 .

The superpotemtials can be written using monopole operators and they actually lift
completely the compact Colomb branches.

We can get rid of the η superpotential on one side of the duality, say A, by turning on real
masses.

Real mass in 3d is a VEV for σ inside a background vector field for a global symmetry.

Consider the 3d duality of the previous slide with Nf + 1 flavors and turn on large real
mass m̂ for the last flavor.

The theory with the real mass has a vacuum at the origin of the moduli space. In this
vacuum the last flavor disappears from the IR physics. Moreover, since the η
superpotential is charged under the symmetries of the heavy fields it also cannot appear in
the IR. Thus we obtain precisely 3d SU(N) SQCD on side A.
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SU duality in 3d

On the dual side B all the quarks acquire real masses. The first Nf quarks get real masses
m̂1 and the last real mass m̂2,

m̂1 =
m̂

Nf − N + 1
, m̂2 =

m̂ (N − Nf )

Nf − N + 1
.

In presence of the real masses theory B has a vacuum where Nf − N σs acquire VEV m̂1

and one σ has VEV m̂2.

Thus, the gauge group in this vacuum is broken to SU(Nf − N)× U(1).

The duality after adding the real masses is thus

SU(N)Nf
Q, Q̃, ↔ SU(Nf − N)Nf

× U(1), q, q̃, b, b̃, M, Y

W = 0 W = Mqq̃ + Ybb̃ + X̃+ + X̃− .

QN → qNf −N b, Q̃N → q̃Nf −N b̃, QQ̃ → M, Y → Y , . . .

A related duality can be obtained by assuming Aharony duality in 3d and gauging the
U(1)J symmetry (Kapustin;ASRW;Park,Park)
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More examples

4d Usp(2N)Nf
↔ Usp(2(Nf − N − 2))Nf

duality reduces to 3d in a similar way.

Here, starting with Nf + 1 flavors and turning on real mass the vacuum at the origin of
the Coulomb branch on side A maps to the origin of side B.

The duality in 3d thus is: Usp(2N)Nf
↔ Usp(2(Nf − N − 1))Nf

Reduction of so(N) dualities is more involved.

Putting so(N)Nf
↔ so(Nf − N + 4)Nf

duality on a circle not all of the compact Coulomb
branches are lifted.

The duality on the circle relates different points on the compact Coulomb branches on the
two sides of the duality.

In particular vacuum at the origin on side A maps to vacuum away of the origin on side B
where the gauge group is broken, SO(Nf − N + 4)→ SO(Nf − N + 2)× SO(2).

After analyzing the dynamics of the SO(2) factor the duality in 3d is
SO(N)Nf

↔ SO(Nf − N + 2)Nf
.

Shlomo S. Razamat (IAS) 4d → 3d June 18, 2013 - KIAS 11 / 17
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. . . . . .

Partition functions

Supersymmetric partition functions are a useful tool to indicate whether a putative duality
is wrong or might be correct.

One of the strongest checks of the 4d Seiberg dualities is the equality of the
supersymmetric indices (S3 × S1) (Dolan,Osborn; Spiridonov, Vartanov, ...)

In 3d one can easily compute the 3d index (S2 × S1) and the 3d partition function on S3:
these also have been shown to be equal for all the known dualities.
(Benini,Closset,Cremonesi,Hwang,Kapustin,Kim,Krattenhaler, Park,Park,Spiridonov,Vartanov,Willett,Yaakov, ...)

The 4d index can be directly related to the S3 partition function of the theory 3d theory
obtained by careful dimensional reduction. (Spiridonov,Vartanov;Gadde,Yan;Imamura)

In particular the equality of 4d indices for Seiberg dual pairs directly implies the equality
of 3d theories with η superpotentials.

Turning on large real masses at the level of the partition function has to be done with
more care (Niarchos)
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From 4d index to 3d partition functions on S3

One can think of the 4d index as a twisted partition function on S3 × S1.

Taking into account the twists coming from the fugacities this partition function can be
thought of as a partition function on S3

b × S̃1. (Imamura and Yokoyama)

For a chiral field reducing on S̃1 one can write thus the 4d index as a product over S3
b

partition functions of the KK modes,

I(4d)(p, q; u) ∝
∞∏

n=−∞
Z(3d)(ω1, ω2; m +

n

r̃
)

This product should be properly regularized and the 4d index appropriately normalized so
that the above becomes an exact equality,

eI0 Γ(e2πimr̃ ; e2πiω1 r̃ , e2πiω2 r̃ ) =

e−∆
∞∏

n=−∞
e
−sign(n) πi

2ω1ω2

(
(m+ n

r̃
−ω)2−

ω2
1+ω2

2
12

)
Γh(m +

n

r̃
;ω1, ω2) .

(This equality is mathematically precisely the SL(3,Z) property of elliptic Gamma
functions.)

Sending the radius r̃ to zero only the zero mass KK mode survives and we get that the 4d
index of a chiral reduces to the 3d S3

b partition function.
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Partition function on S3

The 3d partition function on S3 has the following form (here we have U(N) gauge theory)

Z =
1

N!

∫ N∏
ℓ=1

dσℓ√
−ω1ω2

e
2πiξ

∑
ℓ σℓ

ω1ω2 e
πik

∑
ℓ σ2

ℓ
ω1ω2

∏
i≠j

1

Γh(σi − σj ;ω1, ω2)
×

N∏
i=1

Nf∏
a=1

Γh(ωR + σi +ma +mA;ω1, ω2) Γh(ωR − σi + m̃a +mA;ω1, ω2) .

The integral over σs is literally over the scalars in the vector multiplet. The parameters
ma, m̃a and mA are real masses for the global symmetries.

The limit of taking large real masses might or might not commute with the integrals.

One can argue that taking the limit of large real masses under the integrals while
simultaneously shifting the values of σ corresponds to the different vacua of the theory.
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. . . . . .

SU(N) example: before real masses

The partition functions of theories with η superpotential are given by

ZA =
1

Nc !

∫ Nc∏
j=1

dσj√
−ω1ω2

δ

 Nc∑
j=1

σj

 ∏Nc
j=1

∏Nf
a=1 Γh(σj ±ma + µ̂a ± β

Nc
)∏

i<j Γh(±(σi − σj ))
,

ZB =
∏
a,b

Γh(ma + µ̂a −mb + µ̂b)
1

(Nf − Nc)!
×

∫ Nf −Nc∏
ℓ=1

dσℓ√
−ω1ω2

δ

Nf −Nc∑
j=1

σj

 ∏Nf −Nc
j=1

∏Nf
a=1 Γh(ω + σj ∓ma − µ̂a ± β

Nf −Nc
)∏

i<j Γh(±(σi − σj ))
.

The constraint coming from the superpotential is

Nf∑
a=1

µ̂a = ω (Nf − Nc) .
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. . . . . .

SU(N) example: after real masses

Taking now the limit of large real masses under the integrals carefully we obtain the
following equality

1

Nc !

∫ Nc∏
j=1

dσj√
−ω1ω2

δ

 Nc∑
j=1

σj

 ∏Nc
j=1

∏Nf
a=1 Γh(±σj ±ma + µ̂a ± β

Nc
)∏

i<j Γh(±(σi − σj ))
=

( Nf∏
a,b

Γh(ma + µ̂a −mb + µ̂b)

)
Γh(2ω(Nf + 1− Nc )− 2

Nf∑
a=1

µ̂a)×

1

(Nf − Nc )!

∫ Nf −Nc∏
j=1

dσj√
−ω1ω2

∏Nf
a=1 Γh(ω ± σj ∓ma − µ̂a ± β

Nf −Nc
)∏

i<j Γh(±(σi − σj ))
×

Γh(−ω(Nf + 1− Nc)±
∑
j

σj +

Nf∑
a=1

µ̂a) .
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. . . . . .

Summary

Starting from any 4d dualities one can deduce a 3d duality

From this 3d duality one can flow to many other ones using the 3d tool-kit.

This way one can derive many known 3d dualities as well as many new ones. In particular
explaining why 3d dualities are so similar to 4d ones.

The fact that we find a consistent web of dualities in 3d can be seen as yet another check
of the 4d dualities.

The partition functions are a very useful tool to deduce, sometimes intricate, physics.

Thank You!!
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