Physics and Detectors in ILC

박환배 경북대학교 물리학과

9th LHC Physics Monthly Meeting, KIAS (Aug. 12)

Content

Introduction

Physics

- Detectors
- ILD
- SiD
- Summary

Discovery of Higgs-like Particle at LHC

Signal strengths are consistent with the SM expectations

Excludes the possibility of the resonance being a spin 1 particle via the Landau-Yang theorem

Disfavors the possibility of the resonance being a pseudoscalar particle \rightarrow favor 0⁺ over 0⁻ by 2.5 σ

Is that all?

- SM does not contain any candidate particles to constitute the needed CDM.
- SM is not sufficient source of CP violation needed to explain baryogenesis

 M_{H} =126 GeV would be excluded at almost 4 σ level in a pure SM fit \rightarrow The idea that asymmetry comes from a single Higgs field is just a guess among many other possibilities. \rightarrow requires additional contributions from new particles at the TeV mass scale \rightarrow precise measurements of Z and W properties can reveal effects associated with Higgs boson compositeness or strong interactions.

Primary goal of the TDR is "Realize the ILC"

Contributing Institutes in TDR

12 개 대학교 및 연구소 - 강릉대학교 - 건국대학교 - 경북대학교 - 서울대학교 - 성균관대학교 - 연세대학교 - 인화여자대학교 - 인화여자대학교 - 전북대학교 - 포항가속기실험실(PAL) - 한국과학기술원(KAIST) - 한국고등과학원(KIAS) - 한양대학교

Cleanness experimentally and physically

Trigger-less data taking Less theoretical uncertainty

LHC

operation (new discoveries and measurements from LHC), as well as the possibility of special running at the Z-pole

Higgs Physics at 250 GeV

Leading diagrams for Higgs production processes

Higgs measurement at 250 GeV

Defines momentum resolution requirement in tracking detector design :

$$\frac{\Delta p}{p^2} = 5 \times 10^{-5} \ (Ge \, V/c)^{-1}$$

- Measurements of
- Higgs mass
- cross section
- BRs (including invisible) from the recoil mass
- Total Higgs width
- Higgs couplings
- Threshold scan provides the spin and CP properties

Channel	Measurement	Observable	
ZH ZH ZH Hv _e v _e	Recoil mass distribution $\sigma(HZ) \times BR(H \rightarrow invisible)$ $H \rightarrow b\overline{b}$ mass distribution $H \rightarrow b\overline{b}$ mass distribution	$ \begin{array}{c} m_{\rm H} \\ \Gamma_{\rm inv} \\ m_{\rm H} \\ m_{\rm H} \end{array} $	
ZH	$\sigma(\text{HZ}) \times BR(\mathbb{Z} \to \ell^+ \ell^-)$	o ²	
7H	$\sigma(HZ) \times BR(H \rightarrow b\overline{b})$	$a^2 = a^2 / \Gamma_{\rm H}$	
211	$O(\Pi Z) \times BR(\Pi \rightarrow 00)$	SHZZSHPP/1H	
ZH	$\sigma(\mathrm{HZ}) \times BR(\mathrm{H} \to \mathrm{c}\overline{\mathrm{c}})$	$g_{\rm HZZ}^2 g_{\rm Hcc}^2 / \Gamma_{\rm H}$	
ZH	$\sigma(\mathrm{HZ}) \times BR(\mathrm{H} \to \mathrm{gg})$		
ZH	$\sigma(\mathrm{HZ}) \times \mathit{BR}(\mathrm{H} \to \tau^+ \tau^-)$	$g_{\rm HZZ}^2 g_{\rm H\tau\tau}^2 / \Gamma_{\rm H}$	
ZH	$\sigma(\mathrm{HZ}) \times BR(\mathrm{H} \rightarrow \mathrm{WW}^*)$	$g_{\rm HZZ}^2 g_{\rm HWW}^2 / \Gamma_{\rm H}$	
ZH	$\sigma(\mathrm{HZ}) \times BR(\mathrm{H} \to \mathrm{ZZ}^*)$	$g_{\rm HZZ}^2 g_{\rm HZZ}^2 / \Gamma_{\rm H}$	

Physics at 500 GeV

Physics at 500 GeV

WW fusion process provides a unique opportunity to measure directly HWW coupling with high precision

(this process can be enhanced with beam polarization by 2.34)

Background separation is easier than 250 GeV

$$\sigma(H\nu_e\overline{\nu_e}) \times BR(H \rightarrow WW^*) \propto \frac{g_{HWW}^4}{\Gamma_H}$$

Physics at 1000 GeV

- top Yukawa coupling $e^+e^- \rightarrow t \bar{t} h$
- slowly decreases toward 1000 GeV,
- while e+e- → t tbar background decreases much more rapidly

• BRs to various modes including $h \rightarrow$ mu+mu-

- WW fusion process dominates (~ 400 fb)
- muon Yukawa coupling

 \rightarrow insight into physics of lepton mass generation

HHvv becomes sizable
sensitivity to self-coupling is potentially higher since contribution from background diagrams is smaller

- $\hfill \hfill \hfill$
 - strong test of the SM prediction

$$\frac{g_{HWW}}{g_{HZZ}} = \cos^2 \theta_W$$

Extended Higgs Search

Extended Higgs boson production

 Precise measurements of the mass is very important in order to distinguish MSSM from other models

$$m_{H^{\pm}} = \left(m_A^2 + m_W^2\right)^{\frac{1}{2}}$$
 at leading order

- Higgs pair production observation in various decay channels
- \rightarrow measurement of BRs
- \rightarrow determine type of Yukawa interactions
- \rightarrow discriminate between models

Impact of Beam Polarization

SLC experience

- Polarization
 - enhance event rate by $\frac{L}{L_0} = 1 P_- P_+$
 - P_eff is enhanced by $P_{eff} = \frac{P_- P_+}{1 P_- P_+}$

Polarization	Enhancement factor		
$P(e^-): P(e^+)$	$e^+e^- {\rightarrow} ZH$	$e^+e^- \to H \nu_e \overline{\nu}_e$	
unpolarized	1.00	1.00	
-80%: 0%	1.13	1.80	
-80%:+30%	1.41	2.34	

- at high energy, certain SM processes occur from $e_L e_R^+$

$$\rightarrow \frac{L}{L_0} = (1 - P_-)(1 + P_+)$$

- suppression of WW production and WW fusion process

Jet Reconstruction

→ ji

ILC

 $e^+e^- \rightarrow v\overline{v}WW, v\overline{v}ZZ = W/Z$

Current

- Precision of 3% for 100 GeV jets
- Event reconstruction techniques based on Particle Flow Algorithm for high-resolution jet energy reconstruction and di-jet mass performance.

Particle Flow Algorithm(PFA)

- Charged particles
- use trackers
- Neutral particles
 use calorimeters
- Remove double-counting of charged showers
 - requires high granularity

New detector technologies : highly efficient tracking systems highly granular EM and HAD calorimeters

New generation vertex detectors: Flavour and quark-charge tagging

#ch	ECAL	HCAL
ILC (ILD)	100M	10M
LHC	76K(CMS)	10K(ATLAS)

Performance Requirements(Detector View)

- anti-DID for background charged particles out of the detector
- time stamping at single-bunch level to reduce overlapping events
- Luminosity, beam energy, polarization measurements are needed
- very low material(detectors+supports) budget for inner detectors
- very good hermeticity and minimized dead space
- reduction of heat load and need for cooling ("power pulsing")

Two Detectors Sharing One IP

"push-pull arrangement" : one taking data, the other is out of beam in a close-by maintenance position

cross-checking and confirmation

- reliability
- insurance against mishaps
- complimentary strengths
- competition between collaborations
- increased number of involved scientific personnel

The time for transition must be on the order of one day to maximize integrated luminosity : ~ 100 moves over the life of experiment

One of them will be chosen based on

- Geology and technical aspects

- Infrastructure and economic ripple effects and

It should take few years to evaluate whether Japan host

General Considerations

- Calorimeters inside solenoid
 - For good jet reconstruction
- Low mass for tracking&vertexing
 - Thinned silicon sensors
 - e.g. \sim 50 µm for pixel vertex detectors
 - Light support structures
 - e.g. advanced endplate for TPC
- High granularity esp. for calorimeters&vertexing
 - Fine-granularity calorimeter readout
 - Silicon pad, SiPM, RPC, GEM etc.
 - State-of-the-art pixel technologies for vertexing
 - CMOS, FPCCD, DEPFET, SOI, 3D...
 - Front-end electronics embedded in/near the active area (cabling!)

Basic Concepts

- Jet energy resolution is the key in the ILC physics
- Separation of particles to get good jet energy resolution
 - Fine segmentation of calorimeter \rightarrow resolve particles
 - (intrinsic limit from Moliere radius)
 - Large radius of calorimeter → spatially separate particles by large detector
 High B field → separate charged/neutrals

Strategy of Design for multi-purpose detector

- SiD (compact and cost-constrained)
 - high B field (5 tesla)
 - small ECAL ID
 - small calorimeter volume finer ECAL granularity
 - silicon main tracker
- ILD (large)
- medium B field (3.5 tesla)
- large ECAL ID particle separation for PFA
- redundancy in tracking
- TPC for main tracker

Two detectors provide flexibility for operation at energies up to the TeV range

Silicon Detector (SiD)

- Vertex pixel detector
 - 5 barrels (pixel~ 20x20 $\mu m^2)$
 - [4 disks+ (3 disks at a larger distance)]/side
 - Technology open (3D)
- Si-strip-trackers
 - AC-SSSD (50 µm pitch)
 - 5 barrels (outer cylinder radius is 1.25 m)
 - 4 disks/side
- ECAL (26 X₀)
 - Si-W 30 layers, pixel ~3.5x3.5mm²
 - first 20 layers has a thinner absorber
- HCAL (4.5 nuclear interaction lengths)
 digital HCAL with RPC or
 - GEM with individual readout $(10 \times 10 \text{ mm})^2$
- 40 layers

- Muon System
- scintillator technology + SiPM

- Luminosity
 - LumiCal for precise measurement
 - BeamCal for fast estimation

ILC Large Detector (ILD)

- Vertex pixel detector
 - 6 (3 pairs) or 5 barrels
 - Technology open
- Si-strip-trackers
- 2 barrels between VTX and TPC -(2 pixel disks + 5 strip disks)/side
- 1 barrel between TPC and ECAL
- one behind end-plate of TPC
- Time Projection Chamber
- up to 224 points/track
- dE/dx-based particle identification
- GEM or MicroMEGAS for amplification
- ECAL -Si-W or Scint-W (or hybrid)
- HCAL (4.5 nuclear interaction lengths)
- Scint-tile (3x3 cm²)or Digital (1x2 cm²) HCAL

Pattern Recognition

Summary

Major Physics Processes

	Energy	Reaction	Physics Goal	Polarization
	91 GeV	$e^+e^- \rightarrow Z$	ultra-precision electroweak	Α
	160 GeV	$e^+e^- \rightarrow WW$	ultra-precision W mass	Н
	250 GeV	$e^+e^- \rightarrow Zh$	precision Higgs couplings	Н
_	350–400 GeV	$e^+e^- \rightarrow t\bar{t}$	top quark mass and couplings	Α
Energy		$e^+e^- \rightarrow WW$	precision W couplings	н
flexibili	tv	$e^+e^- \rightarrow \nu \overline{\nu} h$	precision Higgs couplings	L
	500 GeV	$e^+e^- \rightarrow f\overline{f}$	precision search for Z'	Α
		$e^+e^- \rightarrow t\overline{t}h$	Higgs coupling to top	н
		$e^+e^- \rightarrow Zhh$	Higgs self-coupling	н
		$e^+e^- \rightarrow \tilde{\chi}\tilde{\chi}$	search for supersymmetry	В
		$e^+e^- \rightarrow AH, H^+H^-$	search for extended Higgs states	В
	700–1000 GeV	$e^+e^- \rightarrow \nu \overline{\nu} hh$	Higgs self-coupling	L
	,	$e^+e^- \rightarrow \nu \overline{\nu} V V$	composite Higgs sector	L
		$e^+e^- \rightarrow \nu \overline{\nu} t \overline{t}$	composite Higgs and top	L
		$e^+e^- \rightarrow \tilde{t}\tilde{t}^*$	search for supersymmetry	В

- A : crucial in Z resonance, EW couplings of t-quark, $e+e- \rightarrow ff$ precision measurements
- H : opposite polarization enhances luminosity
- L : processes occur dominantly from $e_L^- e_R^+$ B : by using $e_R^- e_L^+$, suppress the SM backgrounds

Backup Slides