$B_s \rightarrow \mu^+ \mu^-$ and MSSM Searches

Seungwon Baek (Korea U.)

LHC Physics Monthly Meeting, KIAS Aug. 06, 2011

Outline

Introduction

Implications of CDF results on MSSM

- (3) $B_s \rightarrow \mu^+ \mu^-$ as a probe of SUSY breaking models
- 4 $B_s \rightarrow \mu^+ \mu^-$ and DM direct detection

5 Conclusions

Indirect Searches of New Physics

- Probe particles running inside a loop, even ones too heavy to be produced at colliders
- Can study the flavor stucture
- Complementary to the direct serch

•
$$B \to X_s \gamma$$
, $(g-2)_{\mu}$, $B \to X_s l^+ l^-$, $B_{(d,s)} - \overline{B}_{(d,s)}$ mixing, $B_s \to \mu^+ \mu^-$

• $B_s \rightarrow \mu^+ \mu^-$ is very sensitive to MSSM with large $\tan \beta$

 $B(B_s \rightarrow \mu^+ \mu^-)$

• CDF saw excess with 7 fb⁻¹ CDF, arXiv:1107.2304

$$\begin{split} B(B_s \to \mu^+ \mu^-)^{\text{CDF}} &= (1.8^{+1.1}_{-0.9}) \times 10^{-8} \\ 4.6 \times 10^{-9} < B(B_s \to \mu^+ \mu^-)^{\text{CDF}} < 3.9 \times 10^{-8} \text{ @ 90\% CL} \\ B(B_s \to \mu^+ \mu^-)^{\text{CDF}} < 4.0 \times 10^{-8} \text{ @ 95\% CL} \end{split}$$

(1)

• CMS measurement with 1.14 fb⁻¹ CMS, arXiv:1107.5834

 $B(B_s \rightarrow \mu^+ \mu^-)^{\text{CMS}} < 1.9(1.6) \times 10^{-8}$ @ 95 (90)% CL

(2)

SM prediction

$$B(B_s \to \mu^+ \mu^-)^{\rm SM} = (3.2 \pm 0.2) \times 10^{-9}$$
 (3)

 $B(B_s \rightarrow \mu^+ \mu^-)$

• $\propto A_t^2 \mu^2 \tan^6 \beta m_A^{-4} \text{Max}(\mu, m_{\text{stop}})^{-4}$ (D. Hooper & C. Kelso, arXiv:1107.3858)

 $B_s \rightarrow \mu^+ \mu^-$ diagrams

(D. Hooper & C. Kelso, arXiv:1107.3858)

Figure: Upper (Lower) panel: without (with) relic density constraint

(D. Hooper & C. Kelso, arXiv:1107.3858)

Regions consistent with thermal relic density

- $\widetilde{\chi}$ coannihilates with $\widetilde{ au}_1$
- A-resonance region $(2m_{\widetilde{\chi}_0} \approx m_A)$

•
$$A(\widetilde{\chi}\widetilde{\chi} \to A \to b\overline{b}, \tau\overline{\tau}) \propto \tan^2\beta/m_A^2$$

Figure: Upper (Lower) panel: without (with) relic density constraint

(D. Hooper & C. Kelso, arXiv:1107.3858)

- Constraints from direct detection experiments
 - only a small fraction of allowed parameters are excluded
 - next generation experiments can test large region

Figure: SI elastic scattering cross section for $\tilde{\chi}_0$ with nucleons. Blue line: constraint from XENON-100.

 $B_s \rightarrow \mu^+ \mu^-$ and MSSM

SUSY breaking models

SB, P. Ko, W.Y. Song, PRL(2002); JHEP(2003)

- $B(B_s \rightarrow \mu^+ \mu^-)$ be sensitive to SUSY models, mSUGRA, AMSB, GMSB, \cdots
 - different models predict different specta and SUSY parameters
 - large correction to y_b at large tan β (HRS effect)

$$y_{b} = \frac{gm_{b}}{\sqrt{2}m_{W}\cos\beta} \frac{1}{1+\Delta_{b}\tan\beta},$$

$$\Delta_{b} \approx \frac{2\alpha_{s}}{3\pi} \mu M_{3}I(m_{\tilde{b}_{1}}, m_{\tilde{b}_{2}}, m_{\tilde{g}})$$
(4)

mSUGRA

SB, P. Ko, W.Y. Song, PRL(2002); JHEP(2003)

- $m_0, m_{1/2}, a_0, \tan\beta, \operatorname{sign}(\mu)$ at GUT scale
- $M_1: M_2: M_3 = 1:2:6$, LSB= \tilde{B} -like neutralino
- For $\tan \beta = 50$ both stau coannihilation and Higgs resonance region are allowed

mSUGRA

SB, P. Ko, W.Y. Song, PRL(2002); JHEP(2003)

 $B_s \rightarrow \mu^+ \mu^-$ and MSSN

mAMSB

SB, P. Ko, W.Y. Song, PRL(2002); JHEP(2003) Ruled out by the lower bound of CDF, although allowed by $(g-2)_{\mu}$ and Higgs mass

2011-08-06 12/15

GMSB

SB, P. Ko, W.Y. Song, PRL(2002); JHEP(2003) Allowed for large tan β if $B(B_s \rightarrow \mu^+\mu^-) \approx 1.0 \times 10^{-8}$.

13/15

Correlation with direct detection experiments SB, Y.G. Kim, P. Ko, JHEP(2005)

- For large tan β both B_s → μ⁺μ^{*} and χ̃N elastic scattering are dominated by heavy Higgs
- Strong correlation is expected
- B_s → µ⁺µ[−] constraint is much stronger than the most sensitive direct search bound

Conclusions

- In MSSM, CDF excess of B_s → μ⁺μ⁻: tan β ≥ 20, correct relic density, most allowed region is sensitive to next generation direct detection experiments.
- B_s → µ⁺µ[−] plays unique role in probing and discriminating SUSY models
- mAMSB model is excluded by the CDF lower bound
- In some SUSY models $B_s \rightarrow \mu^+ \mu^-$ constraint is much stronger than the DM direct search experiments