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Fitness landscapes

• Genotypes are binary sequences σ = (σ1,σ2, ...,σL) with σi ∈ {0,1}
(presence/absence of mutation).

• Together with the Hamming distance d(σ ,σ ′) = ∑L
i=11−δσi,σ ′

i
this defines

the Hamming space H
L
2 which is the L-dimensional hypercube

• A fitness landscape is a real-valued function f (σ) on H
L
2

• Interactions between the fitness effects of different mutations may induce
multiple adaptive peaks:
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Example: The Aspergillus niger fitness landscape

J.A.G.M. de Visser, S.C. Park, JK, American Naturalist 174, S15 (2009)

• Combinations of 5 individually deleterious marker mutations

• Arrows point towards higher fitness

• For a survey of other examples see J.A.G.M. de Visser, JK, Nat. Rev. Gen. 2014



Evolutionary accessibility

“In a rugged field of this character, selection will easily
carry the species to the nearest peak, but there will be
innumerable other peaks that will be higher but which
are separated by valleys...”

Sewall Wright, 1932

• Accessibility of fitness landscapes can be quantified by the number of local
fitness peaks or the number of fitness-monotonic pathways

Franke et al. 2011, Hegarty & Martinsson 2014, Berestycki, Brunet, Shi 2016...

• However, even if uphill pathways exist it is not clear if populations can find
them

• Here we take a dynamic viewpoint and consider populations navigating a
rugged fitness landscape through adaptive walks with local rules



SSWM dynamics

• SSWM = Strong Selection/Weak Mutation Gillespie 1983, Orr 2002

• Weak mutation: Each new mutation goes to fixation or is lost before the
next one arrives

• Strong selection: The fixation probability of a mutation of selective
advantage s in a population of size N is

π(s,N) ≈ 1−exp[−2s]
1−exp[−2Ns]

≈ 1−exp[−2s]

for s > 0 and π = 0 for s ≤ 0, provided N|s| ≫ 1

• Under these conditions the population performs an uphill adaptive walk in
sequence space that terminates at a local fitness maximum

• Formally, an adaptive walk is a Markov chain on H
L
2 with absorption at local

maxima



Adaptive walks

• Four flavors of adaptive walks differing in their transition probabilities:

True Adaptive Walk (TAW)
Transition rate is proportional to the fitness difference between the
resident and mutant genotype (s ≪ 1) Gillespie 1983, Orr 2002

Random Adaptive Walk (RAW) Macken & Perelson 1989

All fitter genotypes are chosen with equal probability (s → ∞)

Greedy Adaptive Walk (GAW) Orr 2003

The most fit genotype is chosen deterministically

Reluctant Adaptive Walk (RELAW)
The least fit among the fitter genotypes is chosen deterministically

Bussolari et al. 2003

• Of interest is the length ℓ (= mean number of steps) and height f ∗

(= mean achieved fitness) of such walks



Walk length in uncorrelated landscapes

In the uncorrelated House-of-Cards/Mutational Landscape model fitness
values are i.i.d. random variables. The following results refer to walks starting
at a low fitness genotype:

• RAW: ℓ ≈ ln(L)+0.099 for large L Flyvbjerg & Lautrup 1992

• GAW: ℓ → ∑∞
k=1

1
k! = e−1≈ 1.71828... Orr 2003

• RELAW: ℓ → L+O(1) S. Nowak & JK 2015

• TAW length asymptotics depends on the extreme value index κ of the
fitness distribution according to J. Neidhart & JK 2011, Jain 2011

ℓ ≈ 1−κ
2−κ

ln(L)+ cκ for κ < 1.

• For relative initial fitness f0 ∈ [0,1] let L → (1− f0)L



Adaptive walks and record processes: i.i.d. case

• For L → ∞ the RAW never stops but remains well defined as a stochastic
process: The k + 1’th fitness value fk+1 along the walk is a random draw
from the fitness distribution P( f ) conditioned on f > fk, hence a record

• For finite L the RAW stops when 1−P( fk) ≈ 1
L, which implies that the time

elapsed in the record process is ∼ L

• At this point the number of records ≈ number of steps in the walk is

ℓ = lnL+O(1)

• Like the distribution of record numbers, the distribution of walk lengths is
Poisson with mean lnL Flyvbjerg & Lautrup 1992

• For the GAW with L → ∞, the probability that the walk takes at least k steps
is equal to the probability 1

k! that k i.i.d. random numbers are increasingly
ordered S.-C. Park, JK, JTB 2016



The Gillespie approximation Gillespie 1983

• A precise relation between adaptive walks and record processes holds
when the genotype space is a complete graph:

1 3

4

f f

ff2

• The order in which genotypes are probed by mutations defines a
permutation of the fitness values f1, f2, ..., fL and the number of walk steps
is equal to the number of records - 1

• The expected number of steps is ∑L
k=2

1
k ≈ lnL+ γ −1≈ lnL−0.42

Orr 2002

• The approximation by a complete graph is correct to leading order also for
the other walk types J. Neidhart & JK 2011



Adaptive walks on

correlated fitness landscapes



The Rough Mount Fuji model

• Linear (“Mt. Fuji”) landscape with a random component Aita et al. 2000

f (σ) = cd(σ ,σ (0))+η(σ), c > 0

η : i.i.d. random variables σ (0): reference sequence

• Fitness-monotonic paths from the reference sequence to the global
maximum are certain to exist for any c > 0 Hegarty & Martinsson 2014

• How large does the fitness gradient c have to be to allow an adaptive walk
to traverse the entire landscape?



Random adaptive walks on the RMF landscape

S.-C. Park, I.G. Szendro, J. Neidhart, JK, Physical Review E 91, 042707 (2015)

• RAW starts from the reference sequence σ (0) and takes only ‘uphill’ steps
that increase d(σ ,σ (0)), which is a good approximation if ℓ ≪ L

d=0

d=1

d=5

d=2

d=3

d=4



Random adaptive walks on the RMF landscape

S.-C. Park, I.G. Szendro, J. Neidhart, JK, Physical Review E 91, 042707 (2015)

• RAW starts from the reference sequence σ (0) and takes only ‘uphill’ steps
that increase d(σ ,σ (0)), which is a good approximation if ℓ ≪ L

• Then the joint probability Ql(y,L) that the walk takes at least l steps and
reaches a genotype with random fitness component y satisfies

Ql+1(y,L) = p(y)
∫ y+c

−∞
dxQl(x,L)

1−P(x− c)L−l

1−P(x− c)

• For L → ∞ this reduces to a recursion relation for a modified record
process, where the condition for the k +1’th record reads Yk+1 > Yk − c

• This is known as the δ -exceedance record process with δ = −c
Balakrishnan, Balasubramanian, Panchapakesan 1996



δ -exceedance records and δ -records

• Various modified record processes have been introduced to account for
effects of measurement error and noise Edery et al. 2013

• For records from i.i.d. sequences, the most studied model are δ -records
defined by the condition

Xn > max{X1,X2, ...,Xn−1}+δ

for the occurrence of a δ -record at time n Gouet et al. 2007

• For δ -records the threshold for record occurrence is defined in terms of the
true record sequence, which is non-stationary and unbounded whenever
the underlying distribution has unbounded support

• In contrast, for the δ -exceedance record process with δ < 0 the threshold
can decrease and the process can enter a stationary phase even for
unbounded RV’s



δ -exceedance records and δ -records
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• Sample paths for exp(1) random variables and δ = −c = −1



Phase transition for exponential RV’s

• For exponential random variables with unit mean the distribution Ql(y) of
the l’th record value is

Ql(y) = − d
dy

[

l

∑
n=0

y
(y+ cn)n−1

n!
e−y−cn

]

• Expected l’th record value displays a phase transition at c = 1:

zl ≡ 〈y〉l ≈











(1− c)l, c < 1
√

2l/π , c = 1,

const., c > 1.

and the mean adaptive walk length behaves as

ℓ ∝











lnL/(1− c), c < 1

(lnL)2, c = 1,

O(L), c > 1.



Critical behavior
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• Scaling plot of order parameter ξl = zl − zl−1 with β = 1 and ν = 2



Transition in the adaptive walk length
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Other distributions

• For general distributions with unbounded support, the mean record value
zl satisfies the recursion relation

zl+1− zl =
∫ ∞

−∞

Ql+1(y)
h(y)

dy− c,

where h(x) = p(x)/[1−P(x)] is the hazard function.

• Assuming that Ql is well concentrated, the integral can be replaced by
1/h(zl+1) which is evaluated asymptotically for large zl

• This analysis shows that the δ -exceedance record process becomes
stationary for any c > 0 if the tail of p(y) is thinner than exponential, but
never for tails fatter than exponential.

• Special role of the exponential distribution reflects that the spacing between
subsequent i.i.d. record values is asymptotically constant in this case.



Generalized δ -exceedance record process

S.-C. Park, JK, J. Phys. A (2016)

• Generalize the condition for the k + 1’th record to Yk+1 > Yk −δk where
δk > 0 is a deterministic sequence called the handicap

• If δk = c(k + 1)b−1 with b > 0, the sequence of handicaps matches the
spacing between subsequent i.i.d. records for distributions of the form

P(x) = 1−exp[−xα]

with α = 1/b, and the exponential case is α = b = 1

• In biological terms this corresponds to replacing the linear “Mt. Fuji”
landscape by a nonlinear (epistatic) deterministic fitness profile

Wiehe 1997

• Epistasis is synergistic/positive (antagonistic/negative) for b > 1 (b < 1)



Phase diagram S.-C. Park, JK, J. Phys. A (2016)
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Phase diagram S.-C. Park, JK, J. Phys. A (2016)
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• b < 1: Mean record value diverges, but the behavior changes from zα
l ∼ l

to zα
l ∼ lγ with γ = (1−b)/(1−1/α) < 1 in region IV.



Phase diagram S.-C. Park, JK, J. Phys. A (2016)
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• b > 1: Fraction Q(s) of sample paths become stationary; Q(s) displays a first
order phase transition along the red line b = 1/α > 1



Stochastic bistability for b > 1

• Suppose that the k’th record value Yk < δk by a fluctuation

• Then the next event satisfies Yk+1 > Yk −δk with probability = 1

• Since Yk+1 is an unconstrained draw from P(x), the probability that
Yk+1 > δk+1 is

P>
l+1 = 1−P(δl+1) = exp[−cα(l +2)α(b−1)] ≪ 1

for large l

• Thus the process can become trapped in a stationary phase where Yk < δk

and all events are “records”

• This implies a decomposition of the distribution of record values

Ql(x) = Q(s)ρ(x)+ [1−Q(s)]ρ̃l(x− z̃l)

where z̃l → ∞ for l → ∞ and the “order parameter” 0 < Q(s) ≤ 1



Stochastic bistability for b = 1/α = 2
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• main plot: Yk > δk (“normal” phase) • inset: Yk < δk (stationary phase)



First order phase transition for b = 1/α = 2
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• Asymptotic fraction of stationary paths Q(s) jumps at c = 1/2



Behavior of Q(s) for small c
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• Inset suggests essential singularity at c = 0: Q(s) ∼ exp[−χ/c]



Adaptive walk length for b = 1
2 < 1

c = 0.5

c = 1

c = 2

lnL

D
R

A
W

104103102101

104

103

102

101

(a)
c = 2

c = 1

c = 0.5

lnL

D
R

A
W

103102101

105

104

103

102

101

(b)
c = 2

c = 1

c = 0.5

ln L

D
R

A
W

104103102

108

107

106

105

104

103

(c)

(a) α = 1 < 1/b ⇒ ℓ ≈ lnL independent of c

(b) α = 2 = 1/b ⇒ ℓ ≈ A(c) lnL with A(c) = [
√

1+ c2− c]−2

(c) α = 4 > 1/b ⇒ ℓ ≈
√

4c[lnL]3/2



Summary

• Adaptive walks provide a simple yet biologically relevant paradigm of how
populations explore complex fitness landscapes

• Random adaptive walks are closely related to record processes

• On correlated fitness landscapes of Rough Mt. Fuji (RMF) type the problem
becomes equivalent to δ -exceedance records

• These display a rich phase behavior that arises from the interplay of the tail
of the distribution with the deterministic handicap sequence δk

• Special role of the exponential distribution appears also in the structural
properties of the RMF landscape1 and for greedy adaptive walks2

1J. Neidhart, I.G. Szendro, JK, Genetics 2014
2S.-C. Park, JK, J. Theor. Biol. 2016


