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Fitness landscape and Fisher’s

geometric model



Fitness landscape

• Fitness f is a measure of the reproductive success of an

organism.

• Genotype σ is the genetic representation of an organism which

is encoded as a binary sequence of length L representing the

presence (absence) of possible mutations.

E.g. σ = (1, 0, 1, · · · , 0)︸ ︷︷ ︸
L

and σ0 = (0, 0, 0, · · · , 0).

• Fitness landscape is a mapping from a genotype σ to its

fitness, i.e., τ → f(τ).
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Underlying genotypic structure: Hypercube

• We call σ and σ′ adjacent iff D(σ, σ′) = 1, i.e., if σ can be

reached by a single mutation from σ′,

• The underlying graph structure becomes an L-dimensional

hypercube with 2L nodes.

L = 3
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Local optima and genotypic complexity

• The genotype σ is a local optimum, if f(σ) > f(σ′) for all

adjacent genotypes σ′.

• The total number of local optima N in the landscape is

expected to obey N ∼ eLΣ, where Σ is called the genotypic

complexity.

• Obviously, 0 ≤ Σ ≤ ln 2.

3



Phenotypic fitness landscape and Fisher’s geometric model1

1R. Fisher (1930).
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Phenotypic fitness landscape and Fisher’s geometric model2

• A phenotype is the set of an organism’s observable traits.

• e.g.) weight, height, color, · · · .
• The phenotypes are assumed to be continuous variables

~z(σ) ∈ Rn where n is the number of traits.

• n is referred to as phenotypic complexity in biology.

• The fitness depends on genotypes only via phenotypes, i.e.,

σ → ~z(σ)→ f(~z(σ)).

2R. Fisher (1930).
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Fisher’s geometric model: Additional assumptions3

1. There is a unique phenotypic optimum at the origin.

2. The fitness is a decreasing function of phenotypic distance to

the origin.

3. Universal pleiotropy: Mutations correspond to random

displacements (~ξi ∈ Rn) drawn from (isotropic) Gaussian

distribution with unit standard deviation.

4. Additivity of mutational displacements:

~z(σ) = ~Q+

L∑
i=1

σi~ξi,

where ~Q is the wild-type phenotype .
3O. Tenaillon, Annu. Rev. Ecol. Evol. Syst.(2014).
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Genotypic complexity of FGM for

fixed n



Main question of the talk

• We calculate the mean number of local optima N out of 2L

possible genotypes as a measure of ruggedness.

• Mapping to a spin model

H = −f(σ) ∝ |~z(σ)|2 =

(
~Q+

L∑
i=1

σi~ξi

)2

= | ~Q|2 −
L∑
i=1

Hiσi −
L∑
i=1

L∑
j=1

Jijσiσj

where Jij = −~ξi · ~ξj andHi = −2 ~Q · ~ξi

• c.f.)

HHopfield = −
∑
i,j

~ξi · ~ξjτiτj
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Mean Number of optima of FGM

• Additivity of random variables:

〈N〉 =

L∑
s=0

(
L

s

)
Rs(L),

where Rs(L) is the prob. that a genotype carrying s

mutations is a local optimum.
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Mean Number of optima of FGM

Rs(L) =

∫
Rn
d~z δ

(
~z − ~Q−

s∑
i=1

~ξi

)
×[

s∏
i=1

∫
D(~z)

d~ξip(~ξi)

][
L∏

i=s+1

∫
D(−~z)

d~ξip(~ξi)

]
,

where D(~x) ≡ {~y ∈ Rn||~y − ~x| > |~x|}.

• δ
(
~z − ~Q−

∑s
i=1

~ξi

)
constrains ~z to be the position of the

phenotype of σ.

• For σi = 1, the optimum condition requires |~z| < |~z − ~ξi|.
• For σi = 0, it requires |~z| < |~z + ~ξi|.
• If z = 0, they are automatically satisfied.

9



Mean Number of optima of FGM

Rs(L) =

∫
Rn
d~z δ

(
~z − ~Q−

s∑
i=1

~ξi

)
×[

s∏
i=1

∫
D(~z)

d~ξip(~ξi)

][
L∏

i=s+1

∫
D(−~z)

d~ξip(~ξi)

]
,

where D(~x) ≡ {~y ∈ Rn||~y − ~x| > |~x|}.

• δ
(
~z − ~Q−

∑s
i=1

~ξi

)
constrains ~z to be the position of the

phenotype of σ.

• For σi = 1, the optimum condition requires |~z| < |~z − ~ξi|.
• For σi = 0, it requires |~z| < |~z + ~ξi|.
• If z = 0, they are automatically satisfied.

9



Mean Number of optima of FGM

Rs(L) =

∫
Rn
d~z δ

(
~z − ~Q−

s∑
i=1

~ξi

)
×[

s∏
i=1

∫
D(~z)

d~ξip(~ξi)

][
L∏

i=s+1

∫
D(−~z)

d~ξip(~ξi)

]
,

where D(~x) ≡ {~y ∈ Rn||~y − ~x| > |~x|}.

• δ
(
~z − ~Q−

∑s
i=1

~ξi

)
constrains ~z to be the position of the

phenotype of σ.

• For σi = 1, the optimum condition requires |~z| < |~z − ~ξi|.
• For σi = 0, it requires |~z| < |~z + ~ξi|.
• If z = 0, they are automatically satisfied.

9



Mean Number of optima of FGM

Rs(L) =

∫
Rn
d~z δ

(
~z − ~Q−

s∑
i=1

~ξi

)
×[

s∏
i=1

∫
D(~z)

d~ξip(~ξi)

][
L∏

i=s+1

∫
D(−~z)

d~ξip(~ξi)

]
,

where D(~x) ≡ {~y ∈ Rn||~y − ~x| > |~x|}.

• δ
(
~z − ~Q−

∑s
i=1

~ξi

)
constrains ~z to be the position of the

phenotype of σ.

• For σi = 1, the optimum condition requires |~z| < |~z − ~ξi|.
• For σi = 0, it requires |~z| < |~z + ~ξi|.
• If z = 0, they are automatically satisfied.

9



Mean Number of optima of FGM

Rs(L) =

∫
Rn
d~z δ

(
~z − ~Q−

s∑
i=1

~ξi

)
×[

s∏
i=1

∫
D(~z)

d~ξip(~ξi)

][
L∏

i=s+1

∫
D(−~z)

d~ξip(~ξi)

]
,

where D(~x) ≡ {~y ∈ Rn||~y − ~x| > |~x|}.

• δ
(
~z − ~Q−

∑s
i=1

~ξi

)
constrains ~z to be the position of the

phenotype of σ.

• For σi = 1, the optimum condition requires |~z| < |~z − ~ξi|.
• For σi = 0, it requires |~z| < |~z + ~ξi|.
• If z = 0, they are automatically satisfied.

9



Small q phase

• Naturally, we can guess that Rs is dominated around z = 0.

Around this point, we found

Rs(L) ≈
s−n/2 exp

[
−Q2/(2s)

]
s exp[−Q2/(2s2)] + L− s

.

• Interpretation: Let Pr be prob. that |~z| < r with r � 1.

Pr =
Vnr

n

(2π)n/2
s−n/2 exp

[
−Q2/(2s)

]
• Typical size of an optimal phenotype:

Vnr
n

(2π)n/2
' (s exp[−Q2/(2s2)] + L− s)−1
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Small q phase

Setting q = Q/L and ρ = s/L, we get

N =

L∑
s=0

(
L

s

)
Rs(L)

≈
∫ 1

0
dρ

1

Ln/2ρn/2
eLΣ(ρ)√

2πLρ(1− ρ)

1

1− ρ+ ρe
− q2

2ρ2

,

where Σ(ρ) ≡ −ρ ln ρ− (1− ρ) ln(1− ρ)− q2/2ρ.

N ≈ 1

L1+n/2

√
1

1 + (1− ρ∗) (q/ρ∗)2

(ρ∗)−n/2eLΣ(ρ∗)

1− ρ∗ + ρ∗e
− q2

2(ρ∗)2

.

N decreases with n.
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Large q phase

• For z � 1, it turns out that the largest contribution comes

from z∗ = q − q0 with q0 = 1/
√

2π and ρ∗ = 1/2.

For q > q0,

N ≈
(
q − q0

q
exp

[
q0

q − q0

])n−1

.

• N does not depend on L, implying Σ = 0.

• If n = 1, N = 1, implying there is only one global optimum.

• N increases with n.
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Phase transition

First order transition occurs at q = qc ' 0.925.
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Numerical check
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Summary and Discussion

• Despite the simplicity of the model, it presents rich nontrivial

features of various complexity measures.

• As reported in different contexts, complexity is generated in

the FGM by two different mechanisms.

• Unlike the common wisdom of evolutionary biologists, the role

of n is highly nontrivial.

• When n = O(L), new method is necessary

• The first correction of the first phase is order of L−1/n

• N in the second phase increases exponentially with n.
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Genotypic complexity of FGM for

joint limit



n, L→∞ with α = n/L fixed

It turns out that solving 〈N〉 can be reduced to a

three-dimensional variational problem, i.e.,
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It turns out that solving 〈N〉 can be reduced to a

three-dimensional variational problem, i.e.,

〈N〉 = C(a∗, b∗, c∗)eLΣred(a∗,b∗,c∗)

(
1 +O

(
1

L

))
, (1)

where the exponent Σred(a, b, c) is given by

Σred(a, b, c) =

− α

2
log

α
(
α+

√
α2 − 16cq2

)
2 (ac+ b2)

+
α+ 2b+

√
α2 − 16cq2

2

+ log

(
1

2

(
e−2c

(
erf

(
α+ 2b√

2
√
a

)
+ 1

)
+ erf

(
α√
2
√
a

)
+ 1

))
(2)
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Phase diagram

0.0 0.5 1.0 1.5 2.0
0.00

0.05

0.10

0.15

0.20

0.25

0.30

(I) (II)

18



Phase diagram
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Large q phase
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