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Fitness landscape and Fisher’s
geometric model



Fitness landscape

e Fitness f is a measure of the reproductive success of an

organism.

e Genotype o is the genetic representation of an organism which
is encoded as a binary sequence of length L representing the
presence (absence) of possible mutations.

Eg o0=(1,0,1,---,0) and 0¢p = (0,0,0,---,0).
I

e [itness landscape is a mapping from a genotype o to its

fitness, i.e., 7 — f(7).



Underlying genotypic structure: Hypercube

e We call 0 and ¢’ adjacent iff D(o,0’) =1, i.e., if o can be
reached by a single mutation from o’,

e The underlying graph structure becomes an L-dimensional
hypercube with 2% nodes.




Local optima and genotypic complexity

e The genotype o is a local optimum, if f(o) > f(c’) for all
adjacent genotypes o”.

e The total number of local optima A in the landscape is
expected to obey A/ ~ eX* where X is called the genotypic
complexity.

e Obviously, 0 < ¥ <In2.



Phenotypic fitness landscape and Fisher’'s geometric model!

Genotype: T1 T T3 T7

Caaseek

Fitness: n) f(r) f(ms) f(r) f(ms) flre)  f(m)

Fitness increases

'R. Fisher (1930).
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Phenotypic fitness landscape and Fisher’'s geometric model?

A phenotype is the set of an organism’s observable traits.

e.g.) weight, height, color, ---.

The phenotypes are assumed to be continuous variables
Z(o) € R™ where 1 is the number of traits.

n is referred to as phenotypic complexity in biology.

The fitness depends on genotypes only via phenotypes, i.e.,
o — Z(o) — f(Z(0)).

’R. Fisher (1930).



Fisher's geometric model: Additional assumptions?

1. There is a unique phenotypic optimum at the origin.

30. Tenaillon, Annu. Rev. Ecol. Evol. Syst.(2014).
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Fisher's geometric model: Additional assumptions?

1.
2.

There is a unique phenotypic optimum at the origin.

The fitness is a decreasing function of phenotypic distance to

the origin.

Universal pleiotropy: Mutations correspond to random
displacements (& € R™) drawn from (isotropic) Gaussian

distribution with unit standard deviation.

Additivity of mutational displacements:
L
Ho)=Q+)) i,
i=1

where Q is the wild-type phenotype .

’0.

Tenaillon, Annu. Rev. Ecol. Evol. Syst.(2014).



Genotypic complexity of FGM for
fixed n




Main question of the talk

e We calculate the mean number of local optima N out of 2F
possible genotypes as a measure of ruggedness.



Main question of the talk

e We calculate the mean number of local optima N out of 2F
possible genotypes as a measure of ruggedness.
e Mapping to a spin model

L 2
H = —f(o) x |Z(0) = (@ £y as>
=l

B L L L
=[QF* = >_Hioi =3 > Jiyoio;
i=1

i=1 j=1
where J;; = —& - f_; and H; = —2@ - §;
e cf)
/HHopﬁeld _ Z 5‘; . ngiTj
]



Mean Number of optima of FGM

e Additivity of random variables:

W =3 (L) Ry(L),

s=0

where Rs(L) is the prob. that a genotype carrying s
mutations is a local optimum.



Mean Number of optima of FGM



Mean Number of optima of FGM

where D(Z) = {y € R"||y — Z| > |Z]}.

L3 (2’— Q- Do é) constrains Z' to be the position of the
phenotype of o.



Mean Number of optima of FGM

R4 (L) :/ dzé (5—@—25) X

[H/D déip é}] [1]_[ / d&p(&; ]

i=s+1
where D(Z) = {y € R"||y — Z| > |Z]}.

L3 (2’— Q- Do é) constrains Z' to be the position of the
phenotype of o.

e For g; =1, the optimum condition requires |2| < |z — {/\.



Mean Number of optima of FGM

R4 (L) :/ dzé (5—@—25) X

1

[H/D dfwé”@ll/ d&p@r

where D(Z) = {y € R"||y — Z| > |Z]}.

L3 (2’— Q- Do é) constrains Z' to be the position of the
phenotype of o.
e For 0; = 1, the optimum condition requires |Z] < |Z — &].

e For o; =0, it requires || < |+ &,.



Mean Number of optima of FGM
Ry(L) = / ) ( Z )

_H/ d&p&]’

i=s+1

i ]

i=17D()
where D(Z) = {y € R"||y — Z| > |Z]}.

L3 (2’— Q- Do é) constrains Z' to be the position of the
phenotype of o.

e For o; = 1, the optimum condition requires |Z] < |Z — &].
e For o; =0, it requires |2] < |Z+ &

o If 2 =0, they are automatically satisfied.



Small ¢ phase

e Naturally, we can guess that R is dominated around z = 0.
Around this point, we found

52 exp [~ Q2/(25)]
sexp[—Q?%/(2s?)] + L — s

Rs(L) =~

10



Small ¢ phase

e Naturally, we can guess that R is dominated around z = 0.
Around this point, we found

52 exp [~ Q2/(25)]
sexp[—Q?%/(2s?)] + L — s

e Interpretation: Let P, be prob. that |Z] < r with r < 1.

Rs(L) =~

Vor™
(27‘(’)"/2

2. = s7"2 exp [—QQ/(ZS)]

e Typical size of an optimal phenotype:

Var™
(271')”/2

~ (sexp[—Q?/(2s*)] + L — s)!
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Small ¢ phase

Setting ¢ = Q/L and p = s/L, we get

N = Z:) <§> R(L)

1 1 eLlim 1
~ dan/Q n/2 oL (1 — ) _a?
0 P TLp Pl — p+ pe 207

where Y(p) = —plnp — (1 — p) In(1 — p) — ¢°/2p.
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Small ¢ phase

Setting ¢ = Q/L and p = s/L, we get

N = Z:) <§> R(L)

—
1 el>(p) 1

1
N/dﬂ
n/2,n/2 20
o LM \2rLp(l=p)y _ | peim

where Y(p) = —plnp — (1 — p) In(1 — p) — ¢°/2p.

1 1 *\—n/2 ,L3(p*)
I \/ (pr) " /2e )

T (=) (a2 | g

— e pre
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Small ¢ phase

Setting ¢ = Q/L and p = s/L, we get

N = Z:) <§> R(L)

1 el>(p) 1

1
N/dﬂ
n/2,n/2 20
o LM \2rLp(l=p)y _ | peim

where ¥(p) = —plnp — (1 — p)In(1 — p) — ¢*/2p.

1 1 * —n/QeﬁT(/) )
N%f|+,]._)\/l_|_(1_p*>(q/p*)2 (IO) D
‘ 1 —p*+ pre 2077

N decreases with n.
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Large ¢ phase

e For z > 1, it turns out that the largest contribution comes
from z* = g — qo with g9 = 1/v/27 and p* = 1/2.

For ¢ > qq,
n—I1
N<q—qo [ 0 D
~ exp .
q q—4qo

e N does not depend on L, implying ¥ = 0.

e If n=1, N =1, implying there is only one global optimum.

13



Large ¢ phase

e For z > 1, it turns out that the largest contribution comes
from z* = g — qo with g9 = 1/v/27 and p* = 1/2.

For ¢ > qq,
n—I1
N<q—qo [ 0 D
~ exp .
q q—4qo

e N does not depend on L, implying ¥ = 0.

e If n=1, N =1, implying there is only one global optimum.

e N increases with n.
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Phase transition

First order transition occurs at ¢ = ¢g. >~ 0.925.
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Numerical check
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Summary and Discussion

e Despite the simplicity of the model, it presents rich nontrivial
features of various complexity measures.

e As reported in different contexts, complexity is generated in
the FGM by two different mechanisms.

e Unlike the common wisdom of evolutionary biologists, the role
of n is highly nontrivial.

e When n = O(L), new method is necessary

e The first correction of the first phase is order of L=/
e N\ in the second phase increases exponentially with n.
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Genotypic complexity of FGM for
joint limit




n, L — oo with «

It turns out that solving (N') can be reduced to a
three-dimensional variational problem, i.e.,
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n, L — oo with a = n/L fixed

It turns out that solving (A') can be reduced to a
three-dimensional variational problem, i.e.,

<N> _ C(a*,b*,C*)eLZred(a*’b*’c*) <1 + O (ll_/>> R (1)

where the exponent ¥™d(qa, b, ¢) is given by

yred(a, b, c) =
a O‘(O‘+v0‘2—160q2> a+2b+ \/a? — 16cg?
— —log +
2 2 (ac+b?) 2
1 a+2b o
+log (= (e <erf< ) —|—1> +erf< > +1>>
g (2 ( V2ya V2va

(2)
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Phase diagram
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Phase diagram
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Large ¢ phase
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