[P3] Interplay between cooperative effects and network topology in social contagions

Kihong Chung, KAIST

The generalized epidemic process (GEP) \dagger is a simple model which captures the cooperative effects of social contagions. It is known that the model exhibits both continuous and discontinuous phase transitions on regular lattices \dagger and Poisson random networks \ddagger . Here we first present a self-contained analysis of the phase diagram and the universality class of the GEP on Poisson random networks \ast . Then we discuss how the behaviors changes in the presence of communities or hubs. While communities simply shift the transition points \ast , hubs have nontrivial effects on the transition properties. Remarkably, provided that the hubs are sufficiently dominant and the order parameter is appropriately defined, even discontinuous transitions at a vanishing epidemic threshold may be observed. Our findings are corroborated by numerical verifications of the extended finite-size scaling theory.

† H.-K. Janssen, M. Mueller, and O. Stenull, Phys. Rev. E **70**, 026114 (2004). *‡* P. S. Dodds and D. J. Watts, Phys. Rev. Lett. **92**, 218701 (2004); G. Bizhani, M.
Paczuski, and P. Grassberger, Phys. Rev. E **70**, 011128 (2012).
* K. Chung, Y. Baek, M. Ha, and H. Jeong, Phys. Rev. E **93**, 052304 (2016).
** K. Chung, Y. Baek, D. Kim, M. Ha, and H. Jeong, Phys. Rev. E **89**, 052811 (2014).