The Markovian Mpemba effect

Oren Raz
Department of Physics of Complex Systems, Weizmann Institute of Science,
Rehovot 76100, Israel

Under certain conditions, it takes a shorter time to cool a hot system than to cool the same system initiated at a lower temperature. This phenomenon – the “Mpemba effect” – was first observed in water and has recently been reported in other systems. Whereas several detail-dependent explanations were suggested for some of these observations, no common underlying mechanism is known. We present a widely applicable mechanism for similar effects in Markovian dynamics, derive the sufficient conditions for its appearance, and demonstrate it in the anti-ferromagnet Ising model. The Markovian Mpemba effect can be classified as “weak” or “strong” and as “direct” or “inverse”. In the Ising model we show that the “strong” (direct and inverse) effect exists even in the thermodynamic limit.