Nonequilibrium Statistical Physics of Complex Systems @ KIAS, 25-28 JUL 2022

Perturbative approach to Information Spreading in the deep MBL regime

Dong-Hee Kim

Gwangju Institute of Science and Technology

Nonequilibrium Statistical Physics of Complex Systems @ KIAS, 25-28 JUL 2022

Perturbative Calculation of OTOC in the deep MBL regime

Joint work with Myeonghyun Kim (SNU)

Gwangju Institute of Science and Technology

Information spreading in Many-Body Localization (MBL)

- MBL vs. Anderson Localization
- Out-of-Time-Ordered Commutator/Correlator (**OTOC**)
- Beyond the "<u>I-bit</u>" model or <u>full diagonalization</u>? Can <u>MBL</u> survive in <u>2D</u>?
- Growth of OTOC in the disordered XXZ model
 - Perturbation method in the weak hopping limit ($J \ll J_z \ll h$)
- Logarithmic light cone of OTOC is shown in 1D and tree-like lattices.

2D MBL? Logarithmic light cone seems to exist in 2D!

XXZ model and "typical" ingredients of MBL

Heisenberg XXZ model in 1D

$$\hat{H} = -\sum_{i=1}^{L-1} \left[J(\hat{S}_{i}^{x} \hat{S}_{i+1}^{x} + \hat{S}_{i}^{y} \hat{S}_{i+1}^{y} + \hat{S}_{i}^{y} \hat{S}_{i+1}^{y} + \hat{S}_{i}^{y} \hat{S}_{i+1}^{y} + \hat{S}_{i}^{y} \hat{S}_{i+1}^{y} + \hat{S}_{i+1}^{y} \hat{S}_{i+1}^{y} + \hat{S}_{i+1}^$$

Disorders

- onsite energy, hopping strength, quasi-periodicity
- cf. disorder-free Stark MBL [PRL 2019; PNAS 2019; Nature 2021]

Interactions

- A *naive* picture of MBL = Anderson localization + Interactions
- What's essential: "*dephasing*" → Information spreading/scrambling

Role of interactions in many-body localization

- no particle transport, eigenstates with area-law entanglement)
- "Many-body" localization what is the role of "interactions"?
- "Information" spreads, yet very slowly, over an MBL system. (entanglement entropy, out-of-time-ordered commutator/correlator)

Chaos	Anderson Localization	"Many-Body" Localization		
linear in time	everything is frozen	linear in " logarithmic" time		

• AL and MBL share lots of non-thermal features. (memory, ETH breaking,

Out-of-Time-Ordered Correlator / Commutator

 $F(t) = \langle \hat{W}^{\dagger}(t)\hat{V}^{\dagger}\hat{W}(t)\hat{V} \rangle$ **OTOCorrelator**

$C(t) = \frac{1}{2} \langle | [\hat{W}(t), \hat{V}(0)] |^2 \rangle = 1 - \text{Re}[F(t)]$

Freedom of choices

 $\hat{\rho}$ \hat{W}, \hat{V}

measurement state

local operators

OTOC in chaotic and MBL systems

Chaotic systems: Lieb-Robinson bound

[E. B. Lieb and D. W. Robinson, Commun. Math. Phys. 28, 251 (1972)]

$\|[O_A(t), O_B]\| \le c \min(|A|, |B|)e^{-a(x-vt)}$

MBL systems: *modified* Lieb-Robinson bound

[I. H. Kim, A. Chandran, and D. A. Abanin, arXiv:1412.3073]

$$\mathbb{E}_{\mu} \| [O_A(t), O_B] \| \le ct |\partial A| e^{-\frac{x}{2\xi}}$$

exponentially decaying interactions between LIOMs

Department of Physics & Photon Science

 ${\mathcal X}$

(quasi-)Local integral of motion (LIOM)

Hamiltonian with physical bits (local interactions)

M. Serbyn et al., PRL 111, 127201 (2013) D. A. Huse et al., PRB 90, 174202 (2014) Review: Abanin & Papic, Ann. Phys. 529 (2017) Review: Abanin et al., RMP 91, 021001 (2019)

(E/L^d) $|\{\tau_i^z\}\rangle = |\dots | \{\tau_i^z\}\rangle$

All-to-all interactions between LIOMs (I-bits)

$$H = \sum_{i} h_{i} \hat{\tau}_{i}^{z} + \sum_{\{i,j\}} J_{ij} \hat{\tau}_{i}^{z} \hat{\tau}_{j}^{z} + \sum_{\{i,j,k\}} K_{ijk} \hat{\tau}_{i}^{z} \hat{\tau}_{j}^{z} \hat{\tau}_{k}^{z} + \cdots$$

Effective l-bit model of MBL

RG: Vosk & Altman (2013); Pekker et al. (2014)

Non-perturbative proof: Imbrie (2016)

$$H = \sum_{i} h_i \hat{\tau}_i^z + \sum_{\{i,j\}} J_{ij} \hat{\tau}_i^z \hat{\tau}_j^z + \sum_{\{i,j,k\}} K_{ijk} \hat{\tau}_i^z \hat{\tau}_j^z \hat{\tau}_k^z$$

with exponentially decaying interactions between LIOMs

$$J_{\rm MBL}^{\rm eff} \sim \tilde{J} \exp(-x/\xi)$$

Existence of LIOMs

Figure from B. Chiaro et al., PRR 4, 013148 (2022)

power-law relaxation of local observables

I-bit spin precessions; dephasing dynamics

Serbyn, Papic, Abanin, PRB 90, 174302 (2014)

logarithmic information spreading (EE)

Serbyn, Papic, Abanin, PRL 110, 260601 (2013)

Huse, Nandkishore, Oganesyan, PRB 90, 174202 (2014)

Logarithmic light cone of OTOC in the effective l-bit Hamiltonian

OTOC (effective I-bit model; $\beta = 0$ **)**

$F(t) = \langle \hat{\tau}_i^x(t) \hat{\tau}_j \hat{\tau}_i^x(t) \hat{\tau}_j^x \rangle_{\beta=0} = \cos(4t J_{ij}^{\text{eff}})$

disorder average

$$\overline{F}(t) = \frac{\sin[4tJ\exp(-|i-j|\xi)]}{4tJ\exp(-|i-j|\xi)}$$

$$\sum_{i} h_i \hat{\tau}_i^z + \sum_{\{i,j\}} J_{ij} \hat{\tau}_i^z \hat{\tau}_j^z + \sum_{\{i,j,k\}} K_{ijk} \hat{\tau}_i^z \hat{\tau}_j^z \hat{\tau}_k^z + \cdots$$

 $J_{ij}^{\text{eff}} \sim \tilde{J} \exp(-|i-j|/\xi)$

exponentially decaying effective interaction

Logarithmic light cone

$$t_0 = \frac{\pi}{4J} e^{-|i-j|/\xi}$$

R. Fan et al., Sci. Bull. 62, 707 (2017)

X. Chen et al., Ann. Phys. 1600332 (2016)

B. Swingle and D. Chowdhury, PRB 95, 060201(R) (2017)

Logarithmic light cone of OTOC beyond the l-bit Hamiltonian

Exact (full) diagonalization on the disorderd XXZ chain

Y. Huang, Y.-L. Zhang & X. Chen, Ann. Phys. 529, 1600318 (2017)

Approximating LIOM in bosonic systems (weak interactions, strong disorder)

S. W. Kim, G. De Tomasi & M. Heyl, PRB 104, 144205 (2021)

- We want to go beyond the system size limit of the exact diagonalization.
 - Practical limit of full diagonalization: $L \sim 12 14$; 1D only.
- We do not want to rely on the LIOMs and the effective I-bit model.
 - We want to stick with a "real" XXZ spin-1/2 Hamiltonian.
 - Perturbation expansion of the OTOC frequency

Construction of perturbation calculations

<u>Weak hopping limit (strong interaction, strong disorder)</u>

 $J \ll J_{z} \ll h$ (natural energy unit : J_{z})

$$H_{0} = -\frac{J_{z}}{2} \sum_{i=1}^{L-1} \hat{\sigma}_{i}^{z} \hat{\sigma}_{i+1}^{z} + \sum_{i=1}^{L} h_{i} \hat{\sigma}_{i}^{z}$$

Non-degenerate eigenvalues are assumed.

Construction of perturbation calculations

OTO

$$\hat{W}(t) = \hat{\sigma}_{i}^{x}(t)$$

$$\hat{V} = \hat{\sigma}_{j}^{x}$$
Deep MBL regime
$$C_{\alpha}(i,j;t) = 1 - \langle \hat{\sigma}_{i}^{x}(t) \hat{\sigma}_{j}^{x} \hat{\sigma}_{i}^{x}(t) \hat{\sigma}_{j}^{x} \rangle = 1 - \sum_{\beta,\gamma,\delta} s_{\alpha\beta\gamma\delta} \cos\left(\omega_{\alpha\beta\gamma\delta}t\right) \approx \left[1 - \cos\left(\omega_{\alpha\beta\gamma\delta}t\right)\right]$$

***No information spreading with the unperturbed Hamiltonian

$$\hat{\sigma}_j^x | \alpha \rangle \approx 1$$

Every Fock (unperturbed) state $| \alpha^{(0)} \rangle$ fixes $|\beta^{(0)}\rangle$, $|\gamma^{(0)}\rangle$, $|\delta^{(0)}\rangle$ for a given (i, j).

$$E_{\beta} + \Delta E_{\gamma} - \Delta E_{\delta}$$

: We have to compute this.

Rayleigh-Schrödinger perturbation expansion (numerical)

For our case of $V_{nn} = 0$,

$$E^{(2n)} = \left\langle E^{(0)} \left| \hat{V} \prod_{i=1}^{2n-1} \left(\hat{P} \hat{V} \right) \right| E^{(0)} \right\rangle + \sum_{m=1}^{n-1} (-1)^m \sum_{k=m}^{n-1} \left[\sum_{\{k_1,\dots,k_m\}} \left(\prod_{j=1}^m E^{(2k_j)} \right) \right] \right]$$

projection operator

$$\hat{P} = \frac{1}{E^{(0)} - \hat{H}_0}$$

sum over all permutations of subject to $\sum k_j = k$ and

Only even-order terms survive.

Fast computation possible with sparse matrix-vector multiplications

Structure of the light cone (1D)

OTOC frequency : the non-zero lowest order term

Perturbation expansion of the frequency

$$\omega_{\alpha}(i,j) = \Delta E_{\alpha} - \Delta E_{\beta} + \Delta E_{\gamma} - \Delta E_{\delta} \quad \longleftarrow \quad \mathsf{We}$$

If $\omega_{\alpha}(i,j) = \omega_{\alpha}(r \equiv |i-j|-1) = aJ^{n(r)}$ and the

 $\omega t_* = \text{constant}$

Allowed lowest orders

٢	2	3	4	5	6	7	8	9	•••
n(r)	2, 4	4, 6	4 , 6, 8	6 , 8, 10	6 , 8, 10, 12	8 , 10, 12, 14	8 , 10, 12, 14, 16	10 , 12, 14, 16, 18	

$$H_0 = -\frac{J_z}{2} \sum_{i=1}^{L-1} \hat{\sigma}_i^z \hat{\sigma}_{i+1}^z + \sum_{i=1}^{L} h_i \hat{\sigma}_i^z \qquad \hat{H}' = -J \sum_{i=1}^{L-1} \hat{\sigma}_i^z \hat{\sigma}_{i+1}^z + \sum_{i=1}^{L-1} h_i \hat{\sigma}_i^z \qquad \hat{H}' = -J \sum_{i=1}^{L-1} \hat{\sigma}_i^z \hat{\sigma}_i^z + \frac{1}{2} \hat{\sigma}_i^z \hat{\sigma}_i^z \hat{\sigma}_i^z \hat{\sigma}_i^z + \frac{1}{2} \hat{\sigma}_i^z \hat{\sigma}_i^z \hat{\sigma}_i^z \hat{\sigma}_i^z + \frac{1}{2} \hat{\sigma}_i^z \hat{\sigma}_i^z \hat{\sigma}_i^z + \frac{1}{2} \hat{\sigma}_i^z \hat{\sigma}$$

e only need the non-zero lowest order of J!

ereby
$$C_{\alpha}(r, t) = 1 - \cos[aJ^{n(r)}t]$$
,

→	$\ln t_*$	$\sim n(r)$: light cone
→	$\ln t_*$	$\sim n(r)$: light con

Both ends do not contribute.

Bounds of the allowed lowest order

Max. of the allowed lowest order = **2r Min.** of the allowed lowest order = \mathbf{r} (if r is even) or $\mathbf{r+1}$ (if r is odd)

$$\omega_{\alpha}(r) = \Delta E_{\alpha} - \Delta E_{\beta} + \Delta E_{\gamma} - \Delta E_{\delta}$$
$$\equiv J^{n(r)}F(r,h)$$

"Upper" light cone: ferromagnetic state

"Lower" light cone: filled with up-down pairs

$$\omega = \Delta E_{\alpha} - \Delta E_{\beta} + \Delta E_{\gamma} - \Delta E_{\delta} \quad \text{(nonzero lowest orde)}$$
$$= \left(\frac{J}{2}\right)^{2r} \cdot 2J_{z} \cdot \left[\frac{1}{\left(\prod_{i=1}^{r-1} F_{i}\right)^{2} F_{r}(F_{r} - J_{z})} + \frac{1}{G_{1}(G_{1} - G_{1})}\right]$$

closed-form expression

Department of Physics & Photon Science

$$\omega = \Delta E_{\alpha} - \Delta E_{\beta} + \Delta E_{\gamma} - \Delta E_{\delta} \quad \text{(nonzero lowest orde)}$$
$$= \left(\frac{J}{2}\right)^{2r} \cdot 2J_{z} \cdot \left[\frac{1}{\left(\prod_{i=1}^{r-1} F_{i}\right)^{2} F_{r}(F_{r} - J_{z})} + \frac{1}{G_{1}(G_{1} - G_{1})}\right]$$

Analytically computable!

Department of Physics & Photon Science

$$\omega = \Delta E_{\alpha} - \Delta E_{\beta} + \Delta E_{\gamma} - \Delta E_{\delta} \quad \text{(nonzero lowest order)}$$

$$= \left(\frac{J}{2}\right)^{2r} \cdot 2J_{z} \cdot \left[\frac{1}{\left(\prod_{i=1}^{r-1} F_{i}\right)^{2} F_{r}(F_{r} - J_{z})} + \frac{1}{G_{1}(G_{1} - J_{z})\left(\prod_{i=2}^{r} G_{i}\right)^{2}} + \sum_{k=1}^{r-1} \frac{F_{k} + G_{k+1}}{\left(\prod_{i=1}^{k} F_{i} \cdot \prod_{j=k+1}^{r} G_{j}\right)^{2} \cdot (F_{k} + G_{k+1} - J_{z})}\right]$$

Analytically computable!

Department of Physics & Photon Science

$$\omega = \Delta E_{\alpha} - \Delta E_{\beta} + \Delta E_{\gamma} - \Delta E_{\delta} \quad \text{(nonzero lowest order)}$$

$$= \left(\frac{J}{2}\right)^{2r} \cdot 2J_{z} \cdot \left[\frac{1}{\left(\prod_{i=1}^{r-1} F_{i}\right)^{2} F_{r}(F_{r} - J_{z})} + \frac{1}{G_{1}(G_{1} - J_{z})\left(\prod_{i=2}^{r} G_{i}\right)^{2}} + \sum_{k=1}^{r-1} \frac{F_{k} + G_{k+1}}{\left(\prod_{i=1}^{k} F_{i} \cdot \prod_{j=k+1}^{r} G_{j}\right)^{2} \cdot (F_{k} + G_{k+1} - J_{z})}\right]$$

Analytically computable!

Department of Physics & Photon Science

"Upper" light cone : scaling behavior

$\overline{\ln \omega} \propto \ln[(ah)^{-2r}]$

regardless of "r"

At a large h,

$$\omega_{\rm FM}(r,h) \to 2\left(\frac{J}{2h}\right)^{2r} \exp(2r\tilde{\omega})$$

normalized random variable

NOTE: multiprecision library is used. (500 digits)

"Upper" light cone : distribution of $\tilde{\omega}$

Increasingly sharp as *r* increases.

Most probable value is meaningful.

Growth of OTOC becomes sharp in a relative scale.

$$\delta[\ln t]$$

"Upper" light cone : distribution of $\tilde{\omega}$

disorder-averaged OTOC

"Lower" light cone (AFM; fastest spreading)

"Lower" light cone : scaling behavior

$\overline{\ln \omega} \propto \ln[a^r h^{-\kappa r}]$ $\kappa \approx 1.55$ (3/2?)

At a large h,

$$\omega_{\rm AF}(r,h) \to \left(\frac{J}{h^{\kappa}}\right)^r \exp(r\tilde{\omega})$$

normalized random variable

NOTE: multiprecision library is used. (500 digits)

"Lower" light cone : well-define, logarithmic

disorder-averaged OTOC in a scaled log-time

Logarithmic spreading in other lattice geometry? higher dimensions?

The perturbation calculations can be generalized to all tree-like geometry.

For example, Bethe lattices.

Nothing changes in the perturbation expansion.

Logarithmic light cone!

What about then, in 2D square lattices?

Logarithmic light cone in 2D : AFM

 $C_{\alpha}(i,j;t) = 1 - \sum s_{\alpha\beta\gamma\delta} \cos\left(i\omega_{\alpha\beta\gamma\delta}t\right) \approx 1 - \cos\left(\omega_{\alpha\beta\gamma\delta}t\right)$ β,γ,δ

No loop allows in the lowest-order term!

$\ln[\text{number of shortest paths}] \sim L$

If there is no disorder correlation between the paths (but there should be),

$\ln \omega \sim L$

Logarithmic light cone in 2D : FM

Analytic expression can be obtained.

Now we have loop contributions.

My pure "speculation":)

The loop terms that have plus and minus signs in the random disorder ensemble would be canceled out among themselves.

Information spreading in strongly disordered 2D XXZ model

The light cone still looks logarithmic in 2D!

2D MBL?

linear fit: a = 5.942(0.065), b = -4.502(0.390)50 lowest order 0 linear fit 40 **AFM**, fastest log₁₀(t_{*}) 00 20 $L \times (L+1)$ lattices 10 . 9 8 6

- phase of the strongly disordered XXZ chain in the weak-hopping limit.
- \bullet strongly suggests the similar slow logarithmic information spreading in 2D.

• We have developed the perturbative method to compute the OTOC for the MBL

Lowest-order perturbation calculations reveal the logarithmic light cone in 1D and

