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Outline

• Information spreading in Many-Body Localization (MBL) 

- MBL vs. Anderson Localization


- Out-of-Time-Ordered Commutator/Correlator (OTOC)


- Beyond the "l-bit" model or full diagonalization? Can MBL survive in 2D? 

• Growth of OTOC in the disordered XXZ model 

- Perturbation method in the weak hopping limit 


- Logarithmic light cone of OTOC is shown in 1D and tree-like lattices. 

- 2D MBL? Logarithmic light cone seems to exist in 2D!

(J ≪ Jz ≪ h)
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XXZ model and "typical" ingredients of MBL

• Disorders 

- onsite energy, hopping strength, quasi-periodicity 
- cf. disorder-free Stark MBL [PRL 2019; PNAS 2019; Nature 2021]


• Interactions 

- A naive picture of MBL = Anderson localization + Interactions 

- What’s essential: “dephasing”  Information spreading/scrambling→

Thermal MBL

interaction disorder

Heisenberg XXZ model in 1D

hi ∈ [−h, h]

h/J
hc



Role of interactions in many-body localization

• AL and MBL share lots of non-thermal features. (memory, ETH breaking, 
no particle transport, eigenstates with area-law entanglement)


• "Many-body" localization - what is the role of "interactions"?


• "Information" spreads, yet very slowly, over an MBL system. 
(entanglement entropy, out-of-time-ordered commutator/correlator)
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Chaos Anderson Localization "Many-Body" Localization

linear in time everything is frozen linear in "logarithmic" time



Out-of-Time-Ordered Correlator / Commutator

C(t) =
1
2

⟨ | [Ŵ(t), ̂V(0)] |2 ⟩ = 1 − Re[F(t)]

OTOCorrelator

OTOCommutator

F(t) = ⟨Ŵ†(t) ̂V†Ŵ(t) ̂V⟩

V̂
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(local, unitary)

a measure of "information" spreading

Freedom of choices

̂ρ Ŵ, ̂V
measurement 

state
local operators



OTOC in chaotic and MBL systems
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Chaotic systems: Lieb-Robinson bound

MBL systems: modified Lieb-Robinson bound

∥[OA(t), OB]∥ ≤ c min( |A | , |B | )e−a(x−vt)

𝔼μ∥[OA(t), OB]∥ ≤ ct |∂A |e− x
2ξ

[E. B. Lieb and D. W. Robinson, Commun. Math. Phys. 28, 251 (1972)]

[I. H. Kim, A. Chandran, and D. A. Abanin, arXiv:1412.3073]

exponentially decaying interactions between LIOMs

OA(t) OB

x

t

x

ln t
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(quasi-)Local integral of motion (LIOM)

Theoretical description of MBL with LIOM
Re
vi
ew

Ar
tic
le

D. A. Abanin and Z. Papíc: Recent progress in many-body localization

Figure 2 In the MBL phase at su!ciently strong disorder, there
emerges an extensive number of LIOMs, τ z

i . Each τ z
i is a Pauli op-

erator unitarily related to the original spins, τ z
i = Uσ z

i U†, with
support decaying exponentially away from the site i. Di"erent τ z

i
commutewith eachother, aswell aswith theHamiltonian H . Each
eigenstate of the system is completely speci#ed by the simultane-
ous quantum numbers of all {τ z

i }.

and the dots . . . denote higher order (N ≥ 3) spin terms.
Observe that certain terms in the expansion (12) may
vanish for symmetry reasons (e.g., there is no σ

y
i term,

etc.).
The spatial decay of τ z

i away from site i can be used to
define a “many-body localization length”, which we de-
noted by ξ above. Unlike the Anderson case, in MBL sys-
tems there could be several characteristic length scales
that determine various properties of the MBL phase
(moreover, these length scales will fluctuate depending
on the eigenstate). For example, in Section 6 we will en-
counter another length scale, ξ̃ , which is in principle dif-
ferent from ξ , and controls the dephasing dynamics in
the MBL phase. These various length scales may also
behave differently as the MBL phase is driven towards
the transition to the thermal phase. In particular, some
of the lengthscales, like ξ , might be expected to diverge
at the transition point, while others (e.g., ξ̃ ) could re-
main finite (see Ref. [13] for more details). Finally, in the
thermal phase, U is highly non-local, there is no expo-
nential hierarchy in the f coefficients in Eq. (12), and
consequently τ z

i are not very useful.
The operators τ z

i are usually referred to as LIOMs [12]
or l-bits [13]. They are Pauli operators with eigenvalues
±1, and form a complete set: specifying the values of
τ z

i = ±1 for all i uniquely specifies an eigenstate |α〉 =
|{τ z

i }〉. The emergence of such quasi-local conservation
laws provides an intuitive explanation for the ergodicity
breaking in the MBL phase: indeed, under unitary evo-
lution the expectation value of each τ z

i is conserved, and
therefore the system retains the local memory of the ini-
tial state at arbitrarily long times.

The relation (10) defines the operators τ z
i in terms of

the physical spin operators σα
i , α = x, y, z. In order to ex-

press an arbitrary physical operator in terms of τ -spins,
we introduce the operators τ

x(y)
i as σ

x(y)
i dressed by the

transformation U:

τ
x(y)
i = Uσ

x(y)
i U†. (14)

Operators τα
i , α = x, y, z and their products form a ba-

sis in the operator space, and any physical operator can
be expanded in this basis. It is worth noting that the re-
lation between physical operators and τα

i operators is
quasi-local. By analogy, one can further define τ±

i , the
raising/lowering operators for the effective spin i.

The above picture of the MBL eigenstates has been
supported by various studies which constructed LIOMs
explicitly [22–24, 26, 57, 58]. Ref. [25] established the
existence of LIOMs using the perturbative techniques of
Ref. [3]. Finally, Ref. [27] provides a mathematical proof
of the quasi-locality of the unitary U in a certain 1d MBL
system, under some natural assumptions regarding the
spectral properties (the absence of level attraction). As
we discuss in the following Sections, the theory based
on LIOMs allows one to understand the entanglement
properties and dynamics in the MBL phase, in particular
the spreading of entanglement in the quantum quench
setup, which was first observed in numerical simula-
tions [16, 17].

The local integrals of motion in the MBL phase are
discussed in depth in reviews [14, 15] in this Volume.

5 Entanglement and classical simulations of
many-body localized states

At strong disorder, all eigenstates in the MBL phase are
product states of LIOMs {τ z

i }. Each LIOM τ z
i is related to

the physical spin at the site i, up to spin-flip corrections
which are exponentially suppressed in the distance from
i, see Eq. (12). In this Section, we explain that such a form
of the eigenstates leads to strong constraints on their
entanglement properties, which in turn has implications
for their simulations on classical computers.

Assuming the existence of LIOMs, it is intuitively clear
that in a 1d MBL system, the entanglement entropy Sent

of the eigenstates is bounded by a constant. Consider
a finite chain of length L bipartitioned in the middle.
The only contributions to the entanglement entropy
come from the terms in the expansion of τ z

i , see Fig. 2
and Eq. (12), located near the bipartition, i.e., within the
length ξ introduced in Eq.(13). As we increase L to the
thermodynamic limit, we expect the entropy to saturate
to a constant Sent(A) ≈ C when L ! ξ . This was verified
in numerical simulations of several 1d models [12, 35,
55]. In higher dimensions, the entropy of the subsystem
A is proportional to the number of degrees of freedom at
the boundary of the region, ∂ A. Thus, MBL eigenstates

1700169 (6 of 13) C© 2017 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheimwww.ann-phys.org

M. Serbyn et al., PRL 111, 127201 (2013)
D. A. Huse et al., PRB 90, 174202 (2014)
Review: Abanin & Papic, Ann. Phys. 529 (2017)
Review: Abanin et al., RMP 91, 021001 (2019)

Hamiltonian with physical bits 
(local interactions)

All-to-all interactions between LIOMs (l-bits)

physical spins

H = ∑
i

hi ̂τz
i + ∑

{i,j}

Jij ̂τz
i ̂τz

j + ∑
{i,j,k}

Kijk ̂τz
i ̂τz

j ̂τz
k + ⋯



Effective l-bit model of MBL

Existence of LIOMs
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power-law relaxation of local observables

logarithmic information spreading (EE)

with exponentially decaying interactions between LIOMs

Jeff
MBL ∼ J̃ exp(−x/ξ)

H = ∑
i

hi ̂τz
i + ∑

{i,j}

Jij ̂τz
i ̂τz

j + ∑
{i,j,k}

Kijk ̂τz
i ̂τz

j ̂τz
k + ⋯

Figure from B. Chiaro et al., PRR 4, 013148 (2022)

l-bit spin precessions; dephasing dynamics

B. CHIARO et al. PHYSICAL REVIEW RESEARCH 4, 013148 (2022)

FIG. 1. Many-body localization with superconducting qubits.
The constituents of the many-body localized phase are localized
orbitals (local integrals of motion, LIOMs). Larger disorder yields
stronger localized LIOMs with a decreased typical length scale ξ .
The spatial disorder yields a distribution of these length scales ξ .
The shaded region indicates effective nonlocal interactions J̃i j be-
tween two LIOMs, giving rise to nontrivial dephasing dynamics and
logarithmic entanglement growth.

all-to-all coupled systems [17,18]. Here, we aim at directly
detecting interaction effects between the local integrals of mo-
tion using interferometric techniques and characterizing the
distribution of the effective interactions between the localized
integrals of motion. We further demonstrate the consequences
of the effective interactions on the preservation of entangle-
ment in the MBL phase.

Our system of coupled superconducting qubits is described
by the Bose-Hubbard model

ĤBH =
nQ∑

i

hiâ
†
i âi

︸ ︷︷ ︸
on-site detuning

+ U
2

nQ∑

i

â†
i âi(â

†
i âi − 1)

︸ ︷︷ ︸
Hubbard interaction

+ J
∑

〈i, j〉

(
â†

i â j + H.c.
)

︸ ︷︷ ︸
NN coupling/hopping

, (1)

where â† (â) denotes the bosonic creation (annihilation) op-
erator, hi ∈ [−w,w] is the random on-site detuning drawn
from a uniform distribution of width 2w, J is the hopping
rate between nearest neighbor lattice sites, U is the on-site
Hubbard interaction, and nQ is the number of superconducting
qubits; see the Supplementary Material for details on the
characterization [40]. A superconducting qubit corresponds
to an anharmonic oscillator, where the nonlinearity is engi-
neered to separately address the transitions between different
levels. We work at a fixed nonlinearity, setting the interaction
strength to U = 160 MHz. The qubit frequencies are used to
tune the on-site potentials hi. Each pair of neighboring qubits
is inductively coupled to a coupler loop through a mutual
inductance. The coupler loop has a Josephson junction, such
that the inductance can be tuned by applying a magnetic flux
through the coupler loop, yielding a variable coupling strength
J between the two qubits.

The localized regime of Eq. (1) is obtained when the fre-
quency detunings hi are large compared to J . In this regime,
the eigenstates of the Hamiltonian are product states of local-
ized orbitals, referred to as local integrals of motion (LIOMs),
which are nearly qubit states but have a spatial extent that

decays exponentially across the neighboring qubits; see Fig. 1.
Before measuring the properties of the LIOMs, we show that
our system of superconducting qubits is manifestly localized
by studying the conventional relaxation dynamics.

II. BREAKDOWN OF ERGODICITY

Evidence for the breakdown of ergodic dynamics can be
obtained by measuring the mobility of excitations in a 1 × 9
qubit array. In Fig. 2 we initialize the system with a number of
photon excitations nph by preparing one, two, or three qubits in
the single excitation Fock state. We measure the population on
one of the initially excited qubits as the system evolves under
Hamiltonian (1). The disorder averaged population at Q9 (the
observation site), NQ9 (t ), for nph = 2, is shown in panel (a).
We choose a reference time tref, in which NQ9 (t ) approaches
an asymptotic value after initial transients have been damped,
but before the dynamics of our system are dominated by
relaxation or dephasing at large timescales (dashed black line)
[40–45].

The distribution of NQ9 (t ) for selected disorder magnitudes
at t = 1 ns and t = tref are shown in Fig. 2(b). At t = 1 ns
the excitations have not propagated, and there is a tight dis-
tribution close to the initial values, regardless of the value of
disorder. At t = tref the distribution is narrow for low disorder
and becomes wider with tails at larger disorders. This can
be understood as follows: at high disorder, level resonances
are increasingly rare which inhibits mobility. The tail of the
distribution results from these rare cases. At low disorder, ex-
citations can propagate freely between superconducting qubits
and the behavior of each disorder instance is typical, giving
rise to narrow distributions.

Figure 2(c) shows the disorder averaged population at
tref = 100 ns as a function of the disorder strength. At weak
disorder our observations are consistent with the ergodic hy-
pothesis that each of the accessible photon states is equally
likely to be observed. A uniform averaging over the available
phase space implies that the occupancy of a given super-
conducting qubit should be nph/nQ. However, as we increase
the disorder strength, significant deviations from the thermal
value are observed, which indicates that system becomes
many-body localized. We note that with more photons in the
system, the population converges to its thermal expectation
value at higher disorders. This is expected because our exper-
iment operates in the few photon regime. While we cannot
pinpoint the precise location of the MBL transition in the
few (but more than one) photon regime, our states show the
distinct properties of many-body localization at comparatively
high disorder, as we characterize below. In the case of a single
excitation only, our one-dimensional system is noninteracting
and hence localized for all disorder magnitudes. The apparent
approach of the population to the thermal value at extremely
weak disorder indicates the regime where the single-particle
localization length exceeds our system size. In two spatial
dimensions, we observe similar signatures for localization for
few-photon excitations; see the Supplemental Material [40].

III. INTERFEROMETRIC METHODS

Nonlocal interactions between the LIOMs are a defining
characteristic of the MBL state. As the system is localized, the

013148-2

e−x/κ
RG: Vosk & Altman (2013); Pekker et al. (2014)

Non-perturbative proof: Imbrie (2016)

Serbyn, Papic, Abanin, PRB 90, 174302 (2014)

Serbyn, Papic, Abanin, PRL 110, 260601 (2013)

Huse, Nandkishore, Oganesyan, PRB 90, 174202 (2014)



Logarithmic light cone of OTOC in the effective l-bit Hamiltonian
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OTOC (effective l-bit model; )β = 0

R. Fan et al., Sci. Bull. 62, 707 (2017)

H = ∑
i

hi ̂τz
i + ∑

{i,j}

Jij ̂τz
i ̂τz

j + ∑
{i,j,k}

Kijk ̂τz
i ̂τz

j ̂τz
k + ⋯LIOM

F(t) = ⟨ ̂τx
i (t) ̂τj ̂τx

i (t) ̂τx
j ⟩β=0 = cos(4tJeff

ij )

Jeff
ij ∼ J̃ exp( − | i − j | /ξ)

F(t) =
sin[4tJ exp( − | i − j |ξ)]

4tJ exp( − | i − j |ξ)

disorder average
t0 =

π
4J

e−|i−j|/ξ

Logarithmic light cone

X. Chen et al., Ann. Phys. 1600332 (2016)

B. Swingle and D. Chowdhury, PRB 95, 060201(R) (2017)

exponentially decaying 
effective interaction



Logarithmic light cone of OTOC beyond the l-bit Hamiltonian
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Exact (full) diagonalization on the disorderd XXZ chain Rapid
Research

Letter

Ann. Phys. (Berlin) 529, No. 7 (2017)

Figure 2 Color images of 1 − Re〈σ x
1 σ x

j (t)σ x
1 σ x

j (t)〉th forβ = 0.1
(top le%), 1 − Re〈σ x

1 σ x
j (t)σ x

1 σ x
j (t)〉eig (top right), 1 − Re

〈σ z
1 σ z

j (t)σ z
1 σ z

j (t)〉eig (bottom le%), and 1 − Re〈(σ x
1 +

σ z
1 )(σ x

j (t) + σ z
j (t))(σ x

1 + σ z
1 )(σ x

j (t) + σ z
j (t))〉eig/4 (bottom

right), averaged over 480 samples. We see LLC in all but the
bottom le% panels.

motion. Therefore, the corresponding OTO correlator de-
cays to zero, almost does not decay, decays to a finite
value, respectively.

Why do OTO correlators behave differently from nor-
mal (i.e., equilibrium retarded) correlators? We have
shown that normal correlators measure the response or
spread of physical quantities like energy or charge after a
perturbation from equilibrium. We now argue that OTO
correlators describe the propagation of information.

The OTO correlator can be obtained by expanding the
square of the commutator

−[σ x
1 , σ x

j (t)]2 = 2 − σ x
1 σ x

j (t)σ x
1 σ x

j (t) − σ x
j (t)σ x

1 σ x
j (t)σ x

1

⇒ 1 − 〈σ x
1 σ x

j (t)σ x
1 σ x

j (t)〉th = ‖[σ x
1 , σ x

j (t)]‖2
F /2L+1, (5)

where β = 0, and ‖A‖F =
√

tr(A† A) is the Frobenius
norm. In comparison, the LR bound (1) concerns
‖[σ x

1 , σ x
j (t)]‖. Figure 3 shows the Frobenius and opera-

tor norms of the commutator. They exhibit similar scal-
ing behavior in the sense of LLC in both panels. Thus, we
have related OTO correlators to the LR bound (1).

We emphasize the difference between the expecta-
tion values of i[σ x

1 , σ x
j (t)] and −[σ x

1 , σ x
j (t)]2 shown in

Figs. 1, 2, respectively. The observation that the latter de-
tects LLC while the former does not can be understood
as follows. The traceless Hermitian operator i[σ x

1 , σ x
j (t)]

has both positive and negative eigenvalues, which may
cancel themselves out upon taking the expectation value
(with respect to either thermal states or eigenstates of the

Figure 3 Color images of ‖[σ x
1 , σ x

j (t)]‖F /2L/2 (le%) and ‖[σ x
1 ,

σ x
j (t)]‖ (right), averaged over 480 samples. The le% panel is es-

sentially the same (see Eq. 5) as the top right panel of Fig. 2. The
right panel shows that the LR bound (1) is tight.

Figure 4 LLC boundary j ∼ vB log10 t at various inverse temper-
atures β . The values of vB are obtained by solving (6) for ε = 1/2.
The top panels of Fig. 2 are the color images for β = 0, 0.1, and
the color images for other values of β are not shown. We see that
vB decreases as β increases.

Hamiltonian). The eigenvalues of the positive semidef-
inite operator −[σ x

1 , σ x
j (t)]2 are nonnegative and con-

tribute additively when taking the expectation value.
We now study the temperature dependence of LLC

using OTO correlators (the temperature dependence of
the linear light cone in homogeneous systems has been
studied; see, e.g., [36]). To determine the LLC boundary
j ∼ vB log10 t, we choose a threshold 0 < ε < 1 and solve
the relationship between j and t in the equation

1 − Re〈σ x
1 σ x

j (t)σ x
1 σ x

j (t)〉th = ε. (6)

We see from the top panels of Fig. 2 that vB depends on
both β and ε. For fixed ε, Fig. 4 shows that vB decreases as
β increases. This trend (faster information propagation
at higher temperatures) was also found in some quantum
field theories [36].

The model (3) for h ! 7 has two mobility edges sep-
arating delocalized eigenstates in the middle of the en-
ergy spectrum from localized ones on the sides [45, 46].

C© 2016 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim (3 of 6) 1600318www.ann-phys.org

Y. Huang, Y.-L. Zhang & X. Chen, Ann. Phys. 529, 1600318 (2017)

β = 0.1

Real-time dynamics of 1D and 2D bosonic quantum matter deep in the many-body
localized phase

Sun Woo Kim,1, ⇤ Giuseppe De Tomasi,2 and Markus Heyl1

1
Max-Planck-Institut für Physik Komplexer Systeme, Nöthnitzer Straße 38, 01187-Dresden, Germany
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Recent experiments in quantum simulators have provided evidence for the Many-Body Localized
(MBL) phase in 1D and 2D bosonic quantum matter. The theoretical study of such bosonic MBL,
however, is a daunting task due to the unbounded nature of its Hilbert space. In this work, we
introduce a method to compute the long-time real-time evolution of 1D and 2D bosonic systems in
an MBL phase at strong disorder and weak interactions. We focus on local dynamical indicators that
are able to distinguish an MBL phase from an Anderson localized one. In particular, we consider the
temporal fluctuations of local observables, the spatiotemporal behavior of two-time correlators and
Out-Of-Time-Correlators (OTOCs). We show that these few-body observables can be computed
with a computational e↵ort that depends only polynomially on system size but is independent of
the target time, by extending a recently proposed numerical method [Phys. Rev. B 99, 241114
(2019)] to mixed states and bosons. Our method also allows us to surrogate our numerical study
with analytical considerations of the time-dependent behavior of the studied quantities.

I. INTRODUCTION

Many-body localization (MBL) generalizes the con-
cept of Anderson Localization (AL) [1] to the interacting
regime and has emerged as a novel paradigm for ergod-
icity breaking of generic many-body systems subject to
strong disorder [2–5].

Experimentally, evidence for the MBL phase has been
provided by the use of synthetic quantum platforms
based on cold-atoms and trapped ions [6–12] also cover-
ing the case of bosons in two dimensions in Ref. 6. How-
ever, on the theoretical side, apart from a few numerical
studies for small systems [13, 14], most of the works have
been confined to fermionic/spin models [15–25]. Indeed,
the study of bosonic system out-of-equilibrium is partic-
ularly challenging due to its unbounded Hilbert space.

In this work, we study the out-of-equilibrium quan-
tum dynamics of bosonic systems deep in an MBL phase
in one (1D) and two dimensions (2D). We formulate a
method to compute the MBL dynamics of bosons in a
controlled approximate fashion by extending a recently
proposed method of Ref. 26 to mixed states and bosonic
systems. In particular, we focus on local dynamical in-
dicators which are able to distinguish an AL phase from
an MBL phase. These dynamical indicators range from
temporal fluctuations of local observables to two-point
correlation functions, some of which may be used in a
cold atom experimental setup, since they involve only
few-point correlation functions [20, 27–29], and out-of-
time-ordered correlators (OTOCs) describing informa-
tion scrambling in quantum many-body systems [30, 31].
We find that bosonic MBL systems exhibit a logarithmic
light-cone for information propagation, see Fig. 1 (a,b)
for the OTOC in 1D and 2D, respectively.
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In an MBL phase, particles, despite their interactions,
are localized in space, which imposes strong constraints
on the dynamics of the system. As a consequence, par-
ticle and energy transport are absent and the system re-
tains local information about its past even for asymp-
totically long times, as opposed to conventional thermal-
izing systems [15–20]. However, for fermionic and spin
systems it is by now understood that interactions in-
duce a dephasing mechanism, which allows entanglement
and quantum correlations to spread during the dynamics,

FIG. 1. Disorder-averaged color plot of (a), (b): Out-of-
time-ordered commutator ln C(x, t), and (c), (d): Two-time
correlator lnG(x, t) for (a), (c): 1D and (b), (d): 2D disor-
dered Bose-Hubbard model.
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Approximating LIOM in bosonic systems 
(weak interactions, strong disorder)
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• We want to go beyond the system size limit of the exact diagonalization.


- Practical limit of full diagonalization: ; 1D only.


• We do not want to rely on the LIOMs and the effective l-bit model.


- We want to stick with a "real" XXZ spin-1/2 Hamiltonian.

L ∼ 12 − 14

Our goal
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Perturbation expansion of the OTOC frequency  



Construction of perturbation calculations
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Weak hopping limit (strong interaction, strong disorder)

Ĥ = −
J
2

L−1

∑
i=1

( ̂σx
i ̂σx

i+1 + ̂σy
i ̂σy

i+1) −
Jz

2

L−1

∑
i=1

̂σz
i ̂σz

i+1 +
L

∑
i=1

hi ̂σz
i ≡ Ĥ0 + Ĥ′ 

H0 = −
Jz

2

L−1

∑
i=1

̂σz
i ̂σz

i+1 +
L

∑
i=1

hi ̂σz
iĤ′ =

L−1

∑
i=1

̂Vi

J ≪ Jz ≪ h

Perturbation (hopping) Unperturbed Hamiltonian (Ising chain)

[Vi = − J( ̂σ+
i ̂σ−

i+1 + ̂σ−
i ̂σ+

i+1)] Non-degenerate eigenvalues are assumed.

(natural energy unit : )Jz
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sαβγδ = ⟨α | ̂σx
i |β⟩⟨β | ̂σx

j |γ⟩⟨γ | ̂σx
i |δ⟩⟨δ | ̂σx

j |α⟩ ≈ 1

OTOC:

Cα(i, j; t) = 1 − ⟨ ̂σx
i (t) ̂σx

j ̂σx
i (t) ̂σx

j ⟩ = 1 − ∑
β,γ,δ

sαβγδ cos (ωαβγδt) ≈ 1 − cos (ωαβγδt)

Every Fock (unperturbed) state  fixes  
, ,  for a given .

|α(0)⟩
|β(0)⟩ |γ(0)⟩ |δ(0)⟩ (i, j)

ωαβγδ = Eα − Eβ + Eγ − Eδ ≈ ΔEα − ΔEβ + ΔEγ − ΔEδ

***No information spreading with the unperturbed Hamiltonian

Construction of perturbation calculations

Ŵ(t) = ̂σx
i (t) ̂V = ̂σx

j

Deep MBL regime

: We have to compute this.
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Rayleigh-Schrödinger perturbation expansion (numerical)

For our case of  , Vnn = 0 Only even-order terms survive.
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P̂ =
1

E(0) � Ĥ0

<latexit sha1_base64="zNrwJRvnjMJPrrNqH+WKwfo1zwM="></latexit> X00
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{k1,...,km}

sum over all permutations of  
subject to  and 

{k1, …, km}

∑ kj = k kj ≥ 1
sum over all permutations of  

subject to  and 
{α1, …, α2n−2k−1}

∑ αj = m αj ≥ 0

projection operator

Fast computation possible with 
sparse matrix-vector multiplications
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J/Jz = 0.001 h/Jz = 10
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Structure of the light cone (1D)
Ŵ(t) = ̂σx

i (t) ̂V = ̂σx
j

separation "r"

t*

disorder-averaged OTOC

NOTE: multiprecision library is used. (500 digits)



OTOC frequency : the non-zero lowest order term
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ωα(i, j) = ΔEα − ΔEβ + ΔEγ − ΔEδ

Perturbation expansion of the frequency

We only need the non-zero lowest order of J! 

Ĥ′ = − J
L−1

∑
i=1

̂ViH0 = −
Jz

2

L−1

∑
i=1

̂σz
i ̂σz

i+1 +
L

∑
i=1

hi ̂σz
i

If  and thereby ,ωα(i, j) = ωα(r ≡ | i − j | − 1) = aJn(r) Cα(r, t) = 1 − cos[aJn(r)t]

ωt* = constant ln t* ∼ n(r) : light cone

Allowed lowest orders

r 2 3 4 5 6 7 8 9 …

n(r) 2, 4 4, 6 4, 6, 8 6, 8, 10 6, 8, 10, 
12

8, 10, 12, 
14

8, 10, 12, 
14, 16

10, 12, 14, 
16, 18 …



Non-zero lowest order
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Ŵ(t) = ̂σx
i (t) ̂V = ̂σx

j

i = 0 j = r + 1

0 0 0 1 0 1

ωα(i, j) = ΔEα − ΔEβ + ΔEγ − ΔEδ

lowest order 𝝹(r) = 2 × [ r - maximum count of (01) or (10) pairs ] 

For a given Fock state ,|α⟩
Both ends do not contribute. Both ends do not contribute.

minimal setting of V operators bridging the two sites i and h 



Bounds of the allowed lowest order

Max. of the allowed lowest order = 2r

Min. of the allowed lowest order = r (if r is even) or r+1 (if r is odd)
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"Upper" light cone: ferromagnetic state

"Lower" light cone: filled with up-down pairs

ωα(r) = ΔEα − ΔEβ + ΔEγ − ΔEδ

≡ Jn(r)F(r, h)



"Upper" light cone (FM; slowest spreading)
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ω = ΔEα − ΔEβ + ΔEγ − ΔEδ

= ( J
2 )

2r

⋅ 2Jz ⋅
1

(∏r−1
i=1 Fi)

2
Fr (Fr − Jz)

+
1

G1(G1 − Jz)(∏r
i=2 Gi)

2 +
r−1

∑
k=1

Fk + Gk+1

(∏k
i=1 Fi ⋅ ∏r

j=k+1 Gj)
2

⋅ (Fk + Gk+1 − Jz)

Fi ≡ h0 − hi Gi ≡ hr+1 − hi

h0 h1 h2 hr+1hrhr−1hr−2

(nonzero lowest order)

closed-form expression

0 0 0 0 00

ΔEα = 0 0 0cannot move!



"Upper" light cone (FM; slowest spreading)
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ω = ΔEα − ΔEβ + ΔEγ − ΔEδ

= ( J
2 )

2r

⋅ 2Jz ⋅
1

(∏r−1
i=1 Fi)

2
Fr (Fr − Jz)

+
1

G1(G1 − Jz)(∏r
i=2 Gi)

2 +
r−1

∑
k=1

Fk + Gk+1

(∏k
i=1 Fi ⋅ ∏r

j=k+1 Gj)
2

⋅ (Fk + Gk+1 − Jz)

Fi ≡ h0 − hi Gi ≡ hr+1 − hi

h0 h1 h2 hr+1hrhr−1hr−2

(nonzero lowest order)

Analytically computable!

0 0 0 0 00

ΔEβ 1 0

1

1



"Upper" light cone (FM; slowest spreading)
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ω = ΔEα − ΔEβ + ΔEγ − ΔEδ

= ( J
2 )

2r

⋅ 2Jz ⋅
1

(∏r−1
i=1 Fi)

2
Fr (Fr − Jz)

+
1

G1(G1 − Jz)(∏r
i=2 Gi)

2 +
r−1

∑
k=1

Fk + Gk+1

(∏k
i=1 Fi ⋅ ∏r

j=k+1 Gj)
2

⋅ (Fk + Gk+1 − Jz)

Fi ≡ h0 − hi Gi ≡ hr+1 − hi

h0 h1 h2 hr+1hrhr−1hr−2

(nonzero lowest order)

Analytically computable!

0 0 0 0 00

ΔEδ 0 1
1

1



"Upper" light cone (FM; slowest spreading)
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ω = ΔEα − ΔEβ + ΔEγ − ΔEδ

= ( J
2 )

2r

⋅ 2Jz ⋅
1

(∏r−1
i=1 Fi)

2
Fr (Fr − Jz)

+
1

G1(G1 − Jz)(∏r
i=2 Gi)

2 +
r−1

∑
k=1

Fk + Gk+1

(∏k
i=1 Fi ⋅ ∏r

j=k+1 Gj)
2

⋅ (Fk + Gk+1 − Jz)

Fi ≡ h0 − hi Gi ≡ hr+1 − hi

h0 h1 h2 hr+1hrhr−1hr−2

(nonzero lowest order)

Analytically computable!

0 0 0 0 00

ΔEγ 1 1
1

11

1



"Upper" light cone : scaling behavior

NOTE: multiprecision library is used. (500 digits)
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ln ω ∝ ln[(ah)−2r]

natural energy unit : Jz

ωFM(r, h) → 2 ( J
2h )

2r

exp(2rω̃)

regardless of "r"

normalized random variable

At a large h,



"Upper" light cone : distribution of ω̃
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Increasingly sharp as r increases.

Most probable value is meaningful.

Growth of OTOC becomes sharp 
in a relative scale. 

δ[ln t]
r

indep. h



"Upper" light cone : distribution of ω̃
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disorder-averaged OTOC

ln[2(J/2h)2rt*] ∝ − 2r

ln t* ∝ r

logarithmic light cone!



"Lower" light cone (AFM; fastest spreading)
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Ĥ = −
J
2 ∑

i

( ̂σx
i ̂σx

i+1 + ̂σy
i ̂σy

i+1) −
Jz

2 ∑
i

̂σz
i ̂σz

i+1 + ∑
i

hi ̂σz
i

0 1 01 0 1

Original XXZ Hamiltonian :

| ⇑ ⟩ | ⇑ ⟩| ⇓ ⟩

Ĥeff = −
Jz

2

l′ 

∑
i=0

̂σz
i ̂σz

i+1 +
l′ 

∑
i=1

Δi ̂σz
i + h0 ̂σz

0 − hl′ +1 ̂σz
l′ +1 + J

l′ 

∑
i=1

̂σx
i

with just a half of the chain length : l′ = l/2



"Lower" light cone : scaling behavior
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NOTE: multiprecision library is used. (500 digits)

ln ω ∝ ln[arh−κr]

ωAF(r, h) → ( J
hκ )

r

exp(rω̃)

normalized random variable

At a large h,

κ ≈ 1.55 (3/2 ?)



"Lower" light cone : well-define, logarithmic
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ln t* ∝ r

Increasingly sharp distribution disorder-averaged OTOC in a scaled log-time



Logarithmic spreading in other lattice geometry? 
higher dimensions?
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The perturbation calculations can be generalized to all tree-like geometry.

For example, Bethe lattices.

Nothing changes in the perturbation expansion.

Logarithmic light cone!

What about then, in 2D square lattices?
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Logarithmic light cone in 2D : AFM
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AFM

ω = ∑
k∈shortest paths

ωk

Cα(i, j; t) = 1 − ∑
β,γ,δ

sαβγδ cos (iωαβγδt) ≈ 1 − cos (ωαβγδt)

No loop allows in the lowest-order term!

ln[number of shortest paths] ∼ L

If there is no disorder correlation between the paths 
(but there should be), 

ln ω ∼ L



Logarithmic light cone in 2D : FM
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Analytic expression can be obtained. Now we have loop contributions.

ω ≈ ∑
k∈shortest paths

ωk

The loop terms that have plus and minus signs in the random 
disorder ensemble would be canceled out among themselves.

My pure "speculation" :)

ln ω ∼ L



Information spreading in strongly disordered 2D XXZ model
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FM, slowest AFM, fastest

The light cone still looks logarithmic in 2D! 2D MBL?

L x (L+1) lattices L x (L+1) lattices



• We have developed the perturbative method to compute the OTOC for the MBL 
phase of the strongly disordered XXZ chain in the weak-hopping limit.


• Lowest-order perturbation calculations reveal the logarithmic light cone in 1D and 
strongly suggests the similar slow logarithmic information spreading in 2D.

Summary

Ŵ(t) = ̂σx
i (t) ̂V = ̂σx

j

separation "r"

Cα(r, t, h) ≈ 1 − cos[ωα(r, h) ⋅ t]

[ωFM] ∼ ( J
h )

2r

[ωAF] ∼ ( J
hκ )

r


