Daya Bay II: A multi-purpose reactor neutrino experiment

Liang Zhan Institute of High Energy Physics

International Workshop on RENO-50 toward Neutrino Mass Hierarchy June 13-14, 2013, Seoul National University

Outline

- Physics
- Challenges
- Detector concepts
- Site optimization and civil
- Schedule
- Summary

The large θ_{13} era

- The non-zero and large θ_{13} has been observed by Daya Bay, Double Chooz, Reno, and accelerator experiments
- Daya Bay will measure $\sin^2 2\theta_{13}$ to 4-5% precision in three years.
- Mass hierarchy and CP phase are the main focus of next generation neutrino experiments.
- A medium baseline reactor neutrino experiment can measure mass hierarchy independent of CP phase.

Daya Bay II Experiment

- 20 kton LS detector
- 2-3 % energy resolution
- Rich physics possibilities
 - Mass hierarchy
 - Precision measurement
 of 3 mixing parameters
 - Supernova neutrino
 - Geoneutrino
 - Sterile neutrino
 - Atmospheric neutrinos
 - Exotic searches

Reactor antineutrino to determine MH

$$P_{ee}(L/E) = 1 - P_{21} - P_{31} - P_{32}$$

$$P_{21} = \cos^4(\theta_{13}) \sin^2(2\theta_{12}) \sin^2(\Delta_{21})$$

$$P_{31} = \cos^2(\theta_{12}) \sin^2(2\theta_{13}) \sin^2(\Delta_{31})$$

$$P_{32} = \sin^2(\theta_{12}) \sin^2(2\theta_{13}) \sin^2(\Delta_{32})$$

$$\Delta m_{31}^2 = \Delta m_{32}^2 + \Delta m_{21}^2$$

$$\text{NH}: |\Delta m_{31}^2| = |\Delta m_{32}^2| + |\Delta m_{21}^2|$$

$$\text{IH}: |\Delta m_{31}^2| = |\Delta m_{32}^2| - |\Delta m_{21}^2|$$

S.T. Petcov et al., PLB533(2002)94 S.Choubey et al., PRD68(2003)113006 J. Learned et al., hep-ex/0612022 L.

Zhan, Y. Wang, J. Cao, L. Wen, PRD78:111103, 2008 PRD79:073007, 2009

Fourier transform to L/E spectrum

• L/E spectrum $\Leftrightarrow \delta m^2$ spectrum (oscillation frequency)

$$F(L/E) = \phi(E)\sigma(E)P_{ee}(L/E)$$
$$FST(\omega) = \int_{t_{min}}^{t_{max}} F(t)\sin(\omega t)dt$$
$$FCT(\omega) = \int_{t_{min}}^{t_{max}} F(t)\cos(\omega t)dt$$

- Clear distinctive features:
 - FCT:
 - NH: valley at the left side
 - IH: valley at the right side
 - FST:
 - NH: prominent peak
 - IH: prominent valley
- No pre-condition of Δm²₃₂: features depends on shape but not absolute peak position.

Quantify features of FCT and FST

• Define quantities

$$RL = \frac{RV - LV}{RV + LV}, \ PV = \frac{P - V}{P + V}$$

- RV/LV: amplitude of the right/left valley in FCT
- P/V: amplitude of the peak/valley in FST
- NH: PV > 0 and RL >0, IH: PV <0 and RL <0
- Combined to one quantity: PV+RL

Interference of two oscillation components of P₃₁ and P₃₂

```
L. Zhan et al.,
PRD78:111103,2008
```

Experimental requirements

• Un-binned Fourier transform of N detected events

$$FST(\omega) = \sum_{i=1}^{N} \sin(\omega L/E'_i), \quad FCT(\omega) = \sum_{i=1}^{N} \cos(\omega L/E'_i),$$

• Energy resolution is very important for Δm^2_{32} and Δm^2_{31} oscillation measurement.

Energy resolution	3%/sqrt(E)
Baseline	58 km
Thermal Power	35 GW

20kt LS detector 3 years ~ 2 sigma 6 years ~ 3 sigma

Alternative method: χ² fit

- Assume the truth is NH/IH, and calculate the truth spectrum.
- Calculate the spectra for NH and IH case and fit them to the truth spectrum respectively.
- Energy resolution is taken into account.

Taking into account ∆m²₃₂

- MH sensitivity improved by taking into account the $\Delta m^2_{\ 32}$ from T2K and Nova in the future

Yu-Feng Li, Jun Cao, Yifang Wang, Liang Zhan, arXiv:1303.6733

Other physics reach

- 1. Precision measurement of mixing parameters: θ_{12} , ΔM^{2}_{12} ,
 - ΔM^{2}_{31} \rightarrow test the unitarity of the mixing matrix
- 2. Supernova neutrinos
- 3. Geo-neutrinos
- 4. Sterile neutrinos
- 5. Target for neutrino beams
- 6. Atmospheric neutrinos
- 7. Solar neutrinos
- 8. High energy cosmic-rays & neutrinos
 - 1. Point source: GRB, AGN, BH, ...
 - 2. Diffused neutrinos
 - 3. Dark matter

Precision measurement of mixing parameters

- Fundamental to the Standard Model and beyond
- Probing the unitarity of U_{PMNS} to ~1% level !

	Current	Daya Bay II	
Δm_{21}^2	3%	0.6%	
Δm ² ₃₁	5%	0.6%	
sin ² θ_{12}	6%	0.7%	
sin ² θ_{23}	20%	-	
sin²θ ₁₃	14% → 5% (Daya Bay in 3 years)	15%	

Will be more precise than CKM matrix elements.

Supernova neutrinos

- Less than 20 events observed so far
- Assumptions:
 - Distance: 10 kpc (our Galaxy center)
 - Luminosity: 3×10⁵³ erg
 - Detector: 20 kt scintillator
- Many types of events:
 - − \overline{v}_e + p → n + e⁺, ~ 3000 correlated events
 - − \overline{v}_e + ¹²C → ¹²B* + e⁺, ~ 10-100 correlated events
 - − v_e + ¹²C → ¹²N* + e⁻, ~ 10-100 correlated events
 - $v_x + {}^{12}C \rightarrow v_x + {}^{12}C^*$, ~ 600 correlated events
 - $v_x + p \rightarrow v_x + p$, single events
 - $v_e + e^- \rightarrow v_e + e^-$, single events
 - $v_x + e^- \rightarrow v_x + e^-$, single events

Energy spectra & fluxes of all types of neutrinos

Water Cerenkov detectors can not see these correlated events

Sterile neutrino

- Put radioactive source in detector center (L = 0-17 m, larger acceptance) or outside of detector (L = 2-34 m, smaller acceptance)
- Vertex reconstruction to determine baseline L.
- Measure the oscillation vs. L/E.

Isotopes produced by reactor with $E_v > 1.8$ MeV and $T_{1/2} > 10$ h

M	T1/2	E_0/MeV	D	T1/2	E ₀ /MeV
⁹⁰ Sr	28.78a	0.546	Y	64.1h	2.282
⁹¹ Sr	9.63h	2.699	Y	58.51d	1.544
93Y	10.18h	2.874	Zr	1.53e6a	0.091
97 Zr	16.9h	2.658	Nb	72.1m	1.934
106Ru	373.6d	0.039	Rh	29.8s	3.541
117Pd	21.03h	0.288	Ag	3.13h	3.956
^{125}Sn	9.64d	2.364	Sb	2.758a	0.767
131 m Te	30h	0.182	Te	25m	2.233
$^{132}\mathrm{Te}$	3.204d	0.493	1	2.295h	3,577
159Sm	9.4h	0.722	Eu	15.19d	2.451
140 Ba	12.75d	1.047	La	1.678d	3.762
144Ce	284.9d	0.319	Pr	17.28m	2.997

Technical challenges

- Requirements:
 - Large detector: 20 kt LS
 - Energy resolution: $3\%/\sqrt{E} \rightarrow 1200$ p.e./MeV
- Ongoing R&D:
 - Low cost, high QE "PMT"
 - New type of PMT
 - − Highly transparent LS: 15m → >20m
 - Understand better the scintillation mechanism
 - Find out traces which absorb light, remove it from the production

Energy resolution

	KamLAND	Daya Bay II		
Detector	~1 kt Liquid Scintillator	20 kt Liquid Scintillator		
Energy Resolution	6%/√E	3%/√E		
Light yield	250 p.e./MeV	1200 p.e./MeV		
	How?			
 Highly transparent LS Attenuation length/D: 15m/16m → 30m/34m X 0.9 High light yield LS: KamLAND: 1.5g/I PPO → 5g/I PPO 				
Light Yield: 30% -	X 1.5			
 Photocathode cov KamLAND: 34% - High QE "PMT": 	erage: ►~80%	X 2.3		
– 20" SBA PMT QE:	25% → 35%	X 1.4		
or New PMT QE: 25% 🗲 40%		X 1.6		
Both:	25% → 50%	X 2.0		

X 4.3-5.0 → (3.0-2.5)%/VE

A new type of PMT: MCP-PMT

- Bottom: reflective photocathode additional QE: ~ 80%*40%
- MCP (Microchannel Plate) to replace
 Dynodes

 no blocking of photons

Low cost MCP by accepting the followings for SPE detection.

- 1. Asymmetric surface;
- 2. Blind channels;
- 3. Non-uniform gains
- 4. Flashing channels

1/

Prototypes

MPE vs the luminance of the LED light

LAB based liquid scintillator

- To enhance the attenuation length
 - Improve raw materials (using Dodecane instead of MO)
 - Improve the production process for large volume
 - Purification
- High light yield
 - Lower temperature
 - Fluor concentration optimization

Test on purification

LAB	Atte. Length @ 430 nm
RAW	14.2 m
Vacuum distillation	19.5 m
SiO ₂ coloum	18.6 m
Al ₂ O ₃ coloum	22.3 m

MC example

- DYBII MC, based on DYB MC (tuned to data), except
 - DYBII Geometry and 80% photocathode coverage
 - SAB PMT: maxQE from 25% → 35%
 - Lower detector temperature to 4 degree (+13% light)
 - LS attenuation length (1m-tube measurement@430nm)
 - From 15m = absorption 24 m + Raylay scattering 40 m
 - To 20 m = absorption 40 m + raylay scattering 40 m

Detector Concept

- Extremely difficult to build both the stainless steel tank and the acrylic tank
- Options:
 - No steel tank, only acrylic tank
 - Steel tank +
 - Acrylic box/wall
 - Balloon
 - nothing

Option 1: no steel tank

- No more interference
- "Easy" for PMT holding
- Water replaces oil buffer
 →cheap
- Difficulties:
 - Larger pressure difference for the acrylic tank.

Option 2: acrylic box

- Mineral oil in the optical modules
- Pipe for filling MO and cabling
- Concerns: leakage through cables

Option 3: balloon

- "Cheap" for construction & quick for installation
- Experience from Borexino (0.5kt) & KamLAND (1kt)
- Need to consider film materials(mechanics, transparency, compatibility, welding technique, radon permeability, ...), cleanness, leak check, deployment, backup plan if fails, ...

Option 4: Steel tank only

- No problem for construction
- A fall back plan of the balloon option
- But
 - PMT protection
 - Trigger rate by backgrounds
 - Resolution affected by backgrounds

If the PMT glass is the same as Daya Bay, radioactivity will be 44 Bq/PMT, or 3.3 MHz in total

If better glass is used, it may be reduced to 1 MHz

Online background suppression

- Divide PMTs to 1476 regions
- Look at the charge ratio Q_i/Q_{total} (i: the region ID)
 - Cut charge ratio < 0.16</p>
 - Cut also N_{p.e.} <500(~0.4 MeV)
- Event rates is reduced to 0.6kHz

Equivalent to fiducial volume cut.

	No Background (vertex corrected)		Mix Background(1MHz, 500ns) (vertex corrected)	
Energy(MeV)	sigma	mean	sigma	mean
2*0.511	0.030	1	0.035	0.94
2.22	0.024	1	0.027	0.97
1.173+1.333	0.021	1	0.024	0.97
6.13	0.016	1	0.017	0.99

Resolution is affected:

ratio_max:gen_pos_r

VETO

- Water
 - A MC simulation show that ~ 2m water, 1500 20" PMT is good enough
- Top VETO Options:
 - -RPC
 - Plastic scintillator
 - Liquid scintillator
 - Two layers?
 - precise muon tracking

The site: Kaiping county, Jiangmen City

	Daya Bay	Huizhou	Lufeng	Yangjiang	Taishan
Status	Operational	Planned	Planned	Under construction	Under construction
Power	17.4 GW	17.4 GW	17.4 GW	17.4 GW	18.4 GW

Optimal baseline

• Proper baseline: ~50 km, around θ_{12} oscillation maximum.

Complex interference between reactors

- Adding one reactor (more statistics) is not always helpful.
- Example:
 - One reactor (6X2.9 GW) at 55 km, the significance is 2σ .
 - Add another reactor
 - Statistics doubles with equal baseline.
 - Helpful, if the baseline difference < 1 km.
 - Harmful as background, if the baseline difference > 1 km.
 - The worst baseline difference is 2 km due to θ_{13} oscillation cancellation.

Example of peak and valley cancellation

Site survey

- Experimental hall selected
- Preliminary geological survey:
 - Review held on Dec. 17, 2012
 - No show-stoppers
- Detailed geological survey has been going on smoothly

Construction plan

- Two options considered
 - Rails(40%, 1100m) + vertical shaft (600m)
 - Rails(40%, 1100m) + horizontal tunnel (6600m)
- Conceptual design completed. Review held on Dec.17, 2012.
 - Rails + vertical shaft is chosen for cost and schedule reasons
 - No show-stoppers

Experimental hall

- Preliminary study shows that:
 - Stability of the hall is not a problem
 - Total time needed for construction is 3 years

Brief schedule

- Civil preparation: 2013-2014
- Civil construction: 2014-2017
- Detector R&D: 2013-2016
- Detector component production: 2016-2017
- PMT production: 2016-2019
- Detector assembly & installation: 2018-2019
- Filling & data taking: 2020

After a number of reviews, we are approved by the CAS(~ CD1)

Summary

- Daya Bay II proposed in 2008-2009, now boosted by the large $\theta_{\rm 13}$
- Rich physics potential
- Although challenging, preliminary study shows it is not impossible.
- A few R&D efforts has been started, more will come.
- Detector design and civil design have been started.
- Good support from the local government and the Chinese funding agencies.

backup

The Quantum Efficiency of PMT

The QE of SBA/UBA

The QE of 20" PMT-R3600

High QE PMTs: SBA (35%) and UBA (43%)

are only available in small format (< 5" diameter ?)

Can we improve the Quantum Efficiency of Photocathode or

Photon Detection Efficiency for the large area 20" PMT ?

QE: 20%→30%

The new design of a large area PMT

High photon detection efficiency + Single photoelectron Detection + Low cost

- 1) Using transmission photocathode (front hemisphere) and reflective photocathode (back hemisphere) $\sim 4\pi$ viewing angle!!
- 2) Using two sets of Microchannel plates (MCPs) to replace the dynode chain

