Liquid Scintillator Challenges for Physics Frontiers

Minfang Yeh Brookhaven National Laboratory

RENO-50, SNU, Korea

a passion for discovery

Office of Science

Cherenkov and Scintillation Detectors

Metal-loaded LS for Physics Frontiers

Liquid Scintillator for Future Frontiers

Water-based Liquid Scintillator

 A new detection medium in search for proton decay

$$p^+ \to K^+ \overline{\nu}$$

■ K⁺ is below Č threshold!

- Simulation of a Large WbLS Detector
 - Based on WCSim software (Geant4-based simulation used in LBNE Water detector concept design)
 - SK-like geometry, 22.5 kton Fiducial Volume
 - SK 20" PMT, 40% coverage
 - WbLS material + scintillation + wavelength shifting

Brookhaven Science Associates

6/14/2013

M. Yeh (BNL)

<u>The</u> $p^+ \rightarrow K^+ \overline{\nu}$ Channel in a WbLS Detector

A simulated event with 90 scintillation photons/MeV

Main background: atmospheric v_µ

- distinguish background from signal by rising-time (from 15% to 85% of maximum
- Reconstructed Kaon energy cut: by subtracting the reconstructed muon energy

300

350

Projected Sensitivity

Brookhaven Science Associates 6/14/2013

M. Yeh (BNL)

Properties of Water-based Liquid Scintillator

- Take advantages of nonlinear light-yield as a function of scintillator % and superior optical property of water.
- A fast scintillation pulse to probe physics below Cerenkov.

6/14/2013

<u>Can we achieve 90 photons per MeV?</u>

3 low Intensity Proton Beams 4 Material Samples

2 Detectors

	210 MeV	dE/dx ~ K+ from PDK		
	475 MeV	Cerenkov threshold		
	2 GeV	MIP		

Water	pure water				
WbLS 1	0.4% LS				
WbLS 2	0.99% LS				
LS	pure LS				

Brookhaven Science Associates 6/14/2013

M. Yeh (BNL)

Light-yield in PE/MeV

- Cerenkov dominates at 2GeV while scintillation takes over at 475MeV and below
- Minimal Čerenkov contribution at 475MeV can use the data at this energy for WbLS to LS comparison
 - Note that LS sample response is divided by 30 to fit on the same scale

PE/MeV Yield vs. Concentration

• LY of WbLS2 sample with 0.99% LS is approximately 1% of pure LS

WbLS next-step

3rd low-intensity proton-beam run on May 6; preli. results are consistent with previous runs

- Same WbLS liquid measured 7 months ago (Stability).
- Only downstream PMT sees the light (Č above threshold) at 2-GeV.
- Both PMTs see the light (Š or Č + Š) at 475- and 2000-MeV.

- 1-ton demonstrator for
 - Absorption & scattering measurement
 - Cerenkov imaging separation
 - Circulation & stability test
 - Possibly reactor neutrino run.
 - (e+/e-) calibration source deployment for (nonlinear) energy responses.
- R&D of slow down scintillation for better Cerenkov separation BRUCKHEV

Water-based Liquid Scintillator is a novel particle detection medium that is

- mass-producible
- cost-effective
- safe to handle
- with high optical performance.

WbLS detector can adjust light production for different physics applications

- nucleon decay (detection below Cerenkov threshold); 100 optical photons per MeV is achievable and demonstrated by the protonbeam runs
- reactor monitoring, veto system, etc.

<u>WbLS has another application of loading hydrophilic ions: A</u> <u>new avenue for scintillator detectors for Intensity Frontiers</u>

Challenge for 0v88 Search

6/14/2013

<u>WbLS loading application:</u> <u>A new Te-doped LS for SNO+ (first WbLS detector)</u>

R&D toward

- A successful sub-percent (0.3%) tellurium doped scintillator that
 - has good optical transmission and suitable light-yield.
 - is stable and compatible in acrylic for >1 y since preparation.

Brookhaven Science Associates

•

Tellurium vs. Neodymium

- *Te-LS is optical and light-yield better than that of Nd.*
- Purification principals for all core materials of Te-LS have been proven and demonstrated in lab-scale.
- Te has ~×30 less 2 v rate.
- Scalability of Te (34.1% ¹³⁰Te.):
 - 2% loading = ~1-ton ¹³⁰Te (at R < 3.5m cut)
- New baseline of 0.3%Te-LS with interests in
 - Enriched ¹⁵⁰Nd (team with superNEMO) and nano-Nd LS

Brookhaven Science Associates

How do w<u>e</u> discover $0v\beta\beta$?

Purification (i.e. Co: K₁=1.49x10³; k₂=3.66x10⁵)

- external bkg. doesn't scale up with Te
 - measure before Te loading.
 - measure after Te removal.

Brookhaven Science Associates

Source	$E_{ m recon}$		NHITs		Gaussian Smear	
	Minfang	$Minfang^2$	Minfang	Minfang ²	Minfang	Minfang ²
^{124}Sb	355.80	1.50	416.60	1.70	396.10	1.60
^{126}Sn	70.70	0.40	92.10	0.60	61.20	0.00
22 Na	4.40	0.00	5.70	0.00	7.80	0.00
²⁶ Al	2.30	0.00	5.20	0.10	0.20	0.00
^{42}K	1.60	0.00	2.10	0.00	1.50	0.00
^{44}Sc	1.20	0.00	1.5	0.00	0.90	0.00
68 Ga	0.40	0.00	0.60	0.00	0.80	0.00
60 Co	3.10	0.00	3.30	0.00	3.60	0.00
¹¹⁰ Ag	10.00	0.00	14.80	0.10	5.10	0.00
82 Rb	0.10	0.00	0.10	0.00	0.10	0.00
106 Rh	0.20	0.00	0.2	0.00	0.20	0.00
102 Rh	0.00	0.00	0.4	0.00	0.60	0.00
^{88}Y	70.60	0.30	67.60	0.20	31.00	0.10
Total Cosm.	520.40	2.20	610.20	2.10	509.10	1.70
PMT β - γ ²¹⁴ Bi	0.045	0.045	0.075	0.075	0.098	0.098
PMT β - γ ²⁰⁸ Tl	0.097	0.097	0.16	0.16	0.21	0.21
H_2O ²¹⁴ Bi	0.00	0.00	0.20	0.20	0.00	0.00
H_2O ²⁰⁸ Tl	0.40	0.40	0.60	0.60	0.30	0.30
AV ²¹⁴ Bi	0.56	0.56	0.56	0.56	0.40	0.40
AV 208 Tl	0.70	0.70	0.80	0.80	0.50	0.50
AV dust	0.00	0.00	0.20	0.20	0.00	0.00
Ropes	0.00	0.00	0.00	0.00	0.00	0.00
Total Ext.	1.80	1.80	2.60	2.60	1.51	1.51
Pileup	0.00	0.00	0.00	0.00	0.00	0.00
²¹⁴ Bi	1.16	1.16	1.50	1.50	1.10	1.10
^{208}Tl	0.04	0.04	0.12	0.12	0.00	0.00
^{8}B	5.34	5.34	10.20	10.20	7.10	7.10
2ν	1.82	1.82	12.00	12.00	2.50	2.50
Total Int.	8.36	8.36	23.82	23.82	10.70	10.70
Total I+E	10.16	10.16	26.42	26.27	12.21	12.21
Total I+E+C	530.56	12.36	636.62	28.97	521.71	14.31

• Liquid purification, self-shielding (~2.5m), fast timing to compensate the resolution.

Objectives

- short-baseline neutrino oscillation search with high sensitivity, probe of new physics
- test of the oscillation region suggested by reactor anomaly and \bar{v}_e disappearance channel
- precision measurement of reactor \bar{v}_e spectrum for physics and safeguards

Challenges

• Reactor-related neutron and cosmic-muon shielding and rejection by a doped scintillator with high neutron detection and PSD capability.

Brookhaven Science Associates

6/14/2013

Challenges for Short Baseline Reactor \bar{v}_e

<u>WbLS loading application:</u> <u>A stable Li-doped LS for SBL (another WbLS detector)</u>

- ⁶Li-LS stability:
 - 1st formula of ⁶Li-doped LS has been stable over 6 months since preparation.
 - 2nd formula of ⁶Li-doped LS improves the UV significantly.
- Gd-LS PSD: A new scintillator?
- Segmented scintillator deployment for reactor background measurement.

Brookhaven Science Associates 6/14/2013

M. Yeh (BNL)

NATIONAL LABORATORY

Challenges for Long Baseline Reactor \bar{v}_e

Extensive Scintillator R&Ds

Large Stokes-shift to 440-460nm

- Lunch for a new search of a new scintillator (c.f. LAB by SNO+)
- Extensive purification of LAB
 - Vacuum distillation
 - Exchange column
 - Still cannot boost up the light
- Flour/shifter optimization could be the key.
- Loading short half-life β⁺ or β⁻ sources in scintillator for energy nonlinearity study
- Can WbLS help?
 - $\lambda_{1/e}$ >30m with loading of inorganic scintillator?

Brookhaven Science Associates

Challenges for Dark Matter Detector

- Radiogenic and Cosmogenic singlescattered neutrons (major backgrounds).
- Passive vs. Active shielding (F. Calaprice):
 - 40-cm polyethylene + 20-cm Pb + 15cm Steel give ~3,000 background events/(ton-yr)
 - 1-m ¹⁰B-loaded scintillator + 4 m water give < 0.1 events/(ton-yr)
- How to control the radiogenic background
 - Ultra clean Gd-, ⁶Li- or ¹⁰B-doped scintillator
 - (0.1Hz) of U/Th (ppt level) are required
 - TMB-loaded LS is not stable

Brookhaven Science Associates 6/14/2013

M. Yeh (BNL)

NATIONAL LABORATOR'

<u>Summary</u>

- Profound frontier physics programs for scintillation detector:
 - Intensity frontiers (LBL, SNO+, SBL, etc.)
 - Cosmic frontiers of DM veto (LZ, DarkSide)
- Water-based liquid scintillator is ready for a proton-decay experiment
 - a whitepaper submitted for Snowmass; current communication with T2K, nonproliferation, etc.
 - Ton-scale demonstrator for Cerenkov & Scintillation separation
 - Low-energy reactor neutrino
- Water-based loading technology opens a new door for future scintillation detectors.
 - A future ton-scale $0 \nu \beta \beta$ (with slow scintillation, β / γ separation) detector.
 - SBL, calibration, etc...

BNL synergetic activity

