Reference Home > Reference
The following is an incomplete list of useful materials for the lecture series and intended for the participants who would like to teach themselves something beforehand. Some are directly relevant to the main lectures but others provide general backgrounds and often go beyond the scope of the program. 
 
 
[Survey Papers]
 
- p-adic Langlands program: C. Breuil, The emerging p-adic Langlands programme, Proceedings of I.C.M. 2010, Vol. II, 203-230, http://www.math.u-psud.fr/~breuil/PUBLICATIONS/ICM2010.pdf

- Perfectoid spaces: P. Scholze, Perfectoid spaces, 
http://arxiv.org/abs/1303.5948

- Rapoport-Zink spaces: M. Rapoport, Non-archimedean period domains, http://www.math.uni-bonn.de/ag/alggeom/preprints/Non_Archimedean.pdf
 
[Seminar/Course Notes]
 
- Jussieu seminar on adic spaces (and related topics): http://www.math.jussieu.fr/~chojecki/adic.html
 
- J. Milne: Introduction to Shimura varieties, 2005, http://www.jmilne.org/math/articles/2005aX.pdf
 
- J. Weinstein: Notes for a mini-course on Lubin-Tate spaces: http://math.bu.edu/people/jsweinst/FRGLecture.pdf
 
- J. Weinstein: Modular curves at infinite level (from Arizona Winter School), notes and videos: http://swc.math.arizona.edu/aws/2013/
 
 
 
[Research Papers and Books]
 
- P. Chojecki, On mod p non-abelian Lubin-Tate theory for GL_2(Q_p), preprint, http://www.math.jussieu.fr/~chojecki/mod%20p%20LT.pdf
 
- P. Chojecki, On non-abelian Lubin-Tate theory and analytic cohomology, preprint, http://www.math.jussieu.fr/~chojecki/papers/deRhamLT.pdf
 
- W. Kim, Rapoport-Zink spaces of Hodge type, preprint, http://arxiv.org/abs/1308.5537
 
- M. Kisin, Integral models for Shimura varieties of abelian type, J.A.M.S. 23(4) (2010), 967-1012, http://www.math.harvard.edu/~kisin/dvifiles/shim.dvi
 
- M. Kisin, Mod p points of Shimura varieties of abelian type, preprint, http://www.math.harvard.edu/~kisin/dvifiles/lr.pdf
 
- M. Rapoport and T. Zink, Period spaces for p-divisible groups, Annals of Math Studies, 1996 (This is where Rapoport-Zink spaces of PEL type are introduced.)
 
- P. Scholze, Perfectoid spaces,Publ. math. de l'IHES 116 (2012), no. 1, 245-313,  http://arxiv.org/abs/1111.4914
 
- P. Scholze, On torsion in the cohomology of locally symmetric varieties, preprint, http://arxiv.org/abs/1306.2070 (We will only consider the case of modular curves, namely when G=GL_2 over Q.)
 
- P. Scholze and J. Weinstein, Moduli of p-divisible groups (with Jared Weinstein), to appear in Cambridge J. of Math., http://arxiv.org/abs/1211.6357
 
M. Rapoport and T. Zink, Period spaces for p-divisible groups, Annals of Math Studies, 1996 (This is where Rapoport-Zink spaces of PEL type are introduced.)